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ABSTRACT 

 

 In the past decade, culture has been a focus of several studies in the information 

systems (IS) field. While the literature on the role of culture in information systems is 

growing, due to the breadth of the concept of culture, the research involving culture remains 

challenging. The main challenge pertains to the definition of culture which is evidenced by 

the presence of more than 150 definitions of culture in literature, yet there is no consensus on 

one. Another challenge is the existence of various cultural frameworks, and consequently the 

presence of multiple measures of culture. However, despite the challenges associated with 

the lack of agreement on the definition of culture and the existence of various measures of 

culture, the notion of culture is considered a critical factor to understand the national, 

organizational, and individual-level behaviors in IS and other business disciplines. This 

dissertation consists of three studies where each study investigates the role of culture in three 

different information systems-related contexts. The first study focusses on two national 

cultures, Indian and the United States, and investigates if deception can be detected across 

cultures, especially when the communication between individuals is mediated by computers. 

The second study investigates the relationship between different forms of organizational 

culture (group, developmental, rational, and hierarchical) and the implementation of agile 

practices, which in turn may lead to organizational creativity. The third study explores the 

role of data-driven decision making culture, which is defined as a culture in which decisions 

are made based on data rather than on the beliefs or opinions of organizational members, in 

creating a firm-specific big data capability.
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CHAPTER 1. INTRODUCTION 

 

In the past decade, culture has been a focus of several studies in the information systems 

(IS) field. While the literature on the role of culture in information systems is growing, due to the 

breadth of the concept of culture, the research involving culture remains challenging (Leidner 

and Kayworth 2006). The main challenge pertains to the definition of culture. According to 

Kroeber and Kluckhohn (1952), there are more than 150 definitions of culture in literature, yet 

there is no consensus on one. For example, Hill (2005) describes culture as a system of values 

and norms that are shared among a group of individuals and that when taken together constitute a 

design for living. According to Hofstede (1980), culture is “the  collective  programming  of  the  

mind  which distinguishes  the  members  of  one  human group from another” (p. 260). Doney et 

al. (1998) applied the “national” label to culture to differentiate the character of a society from 

corporate culture.  

Another challenge is the existence of various cultural frameworks, and consequently the 

presence of multiple measures of culture (e.g., Hall and Hall 1976; Hofstede 1980; House et al. 

2002; Quinn and Rohrbaugh 1983; Schein 1990b). For example, Hall and Hall (1976) 

conceptualize culture with respect to the context, which is the extent to which a society prefers to 

use high context messages (i.e., less explicit) over low context (i.e., highly explicit) messages in 

everyday communication. The Hofstede’s national cultural framework proposes five cultural 

dimensions: individualism, power distance, uncertainty avoidance, masculinity, and long-term 

orientation. A more recent national cultural framework was presented by House et al. (2002), 

who based on their analysis of data collected from 62 countries (also known as the GLOBE 

study), identified nine cultural dimensions: performance orientation, future orientation, 
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assertiveness, power distance, humane orientation, institutional collectivism, in-group 

collectivism, uncertainty avoidance, and gender egalitarianism. Quinn and Rohrbaugh (1981) 

proposes four forms of organizational culture: group culture, developmental culture, rational 

culture, and hierarchical culture. 

Despite the challenges associated with the lack of agreement on the definition of culture 

and the existence of various measures of culture, the notion of culture is considered a critical 

factor to understand the national, organizational, and individual-level behaviors in IS and other 

business disciplines. For instance, Hill et al. (1998) investigated how national culture influenced 

transfer of technology from developed countries to developing countries. Alavi et al. (2006) 

studied the impact of organizational culture on knowledge management practices. Srite and 

Karahanna (2006) examined the role of individuals’ espoused cultural values in their beliefs on 

technology acceptance. Consistent with this stream of research, this dissertation attempts to 

extend the existing literature on cultural studies in the IS field by studying the role of culture in 

three different settings.  

The first study focusses on two national cultures, Indian and the United States, and 

investigates if deception can be detected across cultures, especially when the communication 

between individuals is mediated by computers. The second study investigates the relationship 

between different forms of organizational culture (group, developmental, rational, and 

hierarchical) and the implementation of agile practices, which in turn may lead to organizational 

creativity. The third study explores the role of data-driven decision making culture, which is 

defined as a culture in which decisions are made based on data rather than on the beliefs or 

opinions of organizational members, in creating a big data capability. Besides data-driven 

decision making culture, several other resources, such as managerial and technical skills and 
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basic resources (e.g., adequate investments, sufficient time), were suggested as important 

resources needed to build a firm-specific big data capability. Next, I briefly describe each of the 

three studies. 

 

Study 1: The Effects of Media and Culture on Deception Detection  

Computer-mediated communication (CMC) has become so pervasive that anyone with an 

Internet connection and a computer (or a smart phone) can communicate with others regardless 

of their physical location. While there are several benefits of using new forms of CMC-based 

media (e.g., emails, VoIP), the new technologies are often exploited by con artists to deceive 

individuals over the Internet. Part  of  the  reason  for  this  can be attributed to the anonymous 

environment of  the  Internet,  which  offers  online  con  artists  almost absolute  freedom  to 

indulge in deceptive activities without a fear of getting  caught. Moreover, as computers continue 

to become cheaper and with the increasing number of the Internet users around the globe, more 

and more people are likely to use CMC-based media to communicate with others, not only 

within their own culture, but also with people from other cultures.  

According to a corpus of research in the communication field, approximately one-third of 

everyday communication tends to be deceptive in some form (Hancock et al. 2004).  While there 

are some studies that have examined deception and its detection across cultures (Al-Simadi 

2000; Bond and Atoum 2000), these studies were conducted more than a decade earlier when the 

Internet-based communication technologies were in a nascent stage. In addition to this, while IS 

researchers have presented several theories to classify different media (e.g., media richness, 

channel expansion, and media synchronicity), the majority of this research has assumed all 

communication to be honest. Thus, relatively little is known when individuals engage in 
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deceptive CMC.  Drawing upon leakage theory (Ekman and Friesen 1969; Ekman and 

O'Sullivan 1991), media synchronicity theory (Dennis et al. 2008), and the Hofstede’ framework 

for national culture, this study examines the following research questions: RQ1: How do CMC-

based media (audiovisual, audio only, video only, and text only) impact the ability of individuals 

to detect deception? RQ2: How do cultural and language differences affect the ability of 

individuals to detect deception across cultures that share a language and cultures that do not? 

A controlled laboratory experiment was conducted in which 112 American business 

undergraduate students were asked to judge the veracity of one of three stimulus sets featuring 

either American or Indian students. While all American students spoke in English, half of Indian 

students spoke in Hindi, and the other half spoke in English. Each stimulus consisted of 32 

snippets such that 16 were honest and 16 were dishonest. Of the 32 snippets, six were text only, 

six were audio only, six were video only (meaning no sound), and the remaining six were 

audiovisual. In sum, there were three treatment conditions: 1) Indians speaking in English, 2) 

Indians speaking in Hindi, and 3) Americans speaking in English, and four levels of media (text, 

audio, video only, and audiovisual). Based on data collected from the experiment, the main 

effects of treatment and media, along with their interaction, were tested on individuals’ ability to 

successfully detect deception, which was calculated as the percentage of dishonest snippets that 

were correctly judged dishonest. 

 

Study 2: The Impact of Organizational Culture On Agile Practices 

Organizations in almost all industries have increasingly faced some turbulence in their 

external environments (Karimi et al. 2004). This turbulence often leads to the need for 

developing information systems for new business requests and unexplored problem domains 
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(Tiwana and McLean 2003). Agile systems development (ASD) was specifically designed for 

today’s uncertain market conditions where speed and flexibility are considered critical for 

organizations to survive. Unlike traditional waterfall systems development methodologies 

(SDM), which are suited for stable and foreseeable markets, ASD enables the development and 

release of softwares in Internet time.  

In the past decade, IS scholars have expended considerable effort to understand obstacles 

to successful ASD implementation in organizations. This stream of research often cites 

organizational culture as a significant barrier to ASD (Cockburn and Highsmith 2001; Tolfo et 

al. 2011). Consequently, the majority of this research has focused on recommending the optimal 

agile culture, which is collaborative, less hierarchical, and people-centric. However, since 

organizations with varying cultural orientation and in different industrial sectors have 

successfully embraced ASD, this study proposes that agile practices can be implemented in a 

range of organizational cultures. Additionally, this study dimensionalized ASD into technical 

and social agile practices. While engineering-based systems development practices such as 

coding standards, continuous integration, unit testing, refactoring, and collective ownership, are 

defined as technical agile practices, practices such as daily standup, retrospective meetings, 

access to product manager, and pair-programming that encourage communication among 

employees are defined as social agile practices. 

Drawing on the competing values framework for organizational culture, which proposes 

four types of organizational culture (group, developmental, rational, and hierarchical), the 

relationships between different cultural forms and technical and social agile practices are 

investigated. In a further attempt to assess the benefits of ASD, this study proposes a positive 

relationship between ASD and organizational creativity, which refers to the generation of new 
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products (or services). In sum, this study addresses the following research questions: RQ1: How 

can different forms of organizational culture affect the use of technical and social agile practices? 

RQ2: How do technical and social agile practices influence organizational creativity?  

To answer these research questions, a survey of agile managers in 179 US-based 

organizations was conducted.  The participants were randomly selected from an online LinkedIn 

community of over 12,000 agile practitioners, and they represented a variety of industries (e.g., 

computers, financial services, internet, communications and utilities). Data was analyzed using 

partial least squares (PLS) statistical technique, which is based on a components-based structural 

equation modelling. 

 

Study 3: Towards the Development of a Big Data Capability  

The era of big data, which refers to unstructured, diverse, and fast moving data, has 

begun where organizations in all industries are increasingly collecting enormous volumes of 

data. While the research into the economic benefits of big data is in a nascent stage, 

organizations around the globe have been heavily investing in big data initiatives. For instance, 

according to Gartner’s (2013) survey of 720 firms worldwide, 64% of organizations (an increase 

of 8% over the previous year) have already invested in or plan to make investments in big data. 

However, we know from prior studies that investments alone do not generate competitive 

advantage; instead firms need to create capabilities that rival firms find hard to match 

(Bharadwaj 2000; Carr 2003). In this sense, investments represent one such resource that is 

needed by the firm to create a big data capability, which this study defines as a firm’s ability to 

assemble, integrate, and deploy its big data-specific resources. 
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Moreover, there is a widely-held perception that big data projects fail because most 

organizations do not have the right technical tools to harness its potential; however, some have 

recently started to raise doubts about this popular opinion (McAfee and Brynjolfsson 2012). For 

instance, Lavalle and colleagues (2014) indicate that the reasons why big data projects are often 

unsuccessful relate to organizational culture rather than to the data attributes and technology. 

Similarly, Ross, Beath, and Quaadgras (2013) assert that culture can impede (or enhance) an 

organization’s ability to benefit from big data. To do so, organizations need to have a data-driven 

decision making culture in which decisions are made in response to the insights extracted from 

data rather than on the opinions or beliefs of senior executives (McAfee and Brynjolfsson 2012; 

Ross et al. 2013). In addition to data-driven culture, the success of big data projects is also 

dependent on the wisdom and business acumen of managers and big data-specific skills of 

employees (Chen et al. 2012; LaValle et al. 2014) 

Drawing on the resource-based view of the firm and the recent work in big data, this 

study identifies various resources (e.g., technology, data, investments, and managerial and 

technical skills) that are needed by firms to build a big data capability. Further, using Grant’s 

(2010) classification of organizational resources, this study categorizes these big data-specific 

resources into tangible, human, and intangible types. Specifically, this study will answer the 

following research question: “What are the resources needed to create a firm-level big data 

capability?” Additionally, this study proposes and validates an instrument to measure a big data 

capability of the firm. 
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CHAPTER 2.  THE EFFECTS OF MEDIA AND CULTURE ON DECEPTION 

DETECTION 

 

 Abstract 

Over the years, a substantial amount of research has been conducted pertaining to 

deception and its detection. However, the majority of this research has examined deception in 

face-to-face communication, and thus very little is known about deception and its detection when 

communication is mediated by computers. With the diffusion of the Internet, more and more 

people around the world are making use of computer-mediated communication (CMC) tools 

(e.g., emails, VoIP) to interact with others within and outside of their own culture. Given that 

approximately one-third of daily communication tends to be deceptive in some form (Hancock et 

al. 2004), the amount of deception in cross-cultural communication that is mediated by 

computers is likely to rise. Thus, to gain more insights about detection of deception in computer-

mediated cross-cultural communication, we asked 112 American undergraduate students to 

detect lies from stimulus sets featuring Indians speaking in English, Indians speaking in Hindi, 

and Americans speaking in English. These stimulus sets were presented in one of four CMC-

based media: audiovisual, audio only, video only, and text only. The results of our experiment 

indicate that participants were more successful at detecting deception from an audio only 

medium than from audiovisual, followed by video only, and text only media. Further, 

participants were better able to detect deception from the stimulus sets featuring Indians 

speaking in English, followed by Indians speaking in Hindi, and Americans speaking in English. 
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Introduction 

The unprecedented growth in computer-mediated communication (CMC) technology has 

made this world a smaller place; however, the ubiquity of CMC–based media (e.g., email, VoIP, 

SMS, instant messaging) and the low cost associated with their use have spawned a whole new 

world of deception. For example, consider the Skype call scam, in which Skype users receive a 

call from someone pretending to be the company’s support representative and asking them to 

install an antivirus program to protect their Windows machine (Kirk 2012). Though MIS 

researchers, over the years, have been actively developing and examining the theories of 

computer-mediated communication (e.g., media synchronicity theory, media richness theory), 

the majority of this research has assumed all communication to be honest. Thus, relatively little 

is known when individuals engage in deceptive communication that is mediated by computers. 

Even less is known when computer-mediated deceptive communication involves participants, 

who are from different cultures and speak different languages.  

As computers continue to become cheaper and dispersed all over the world (Friedman, 

2005), more and more people are making use of CMC-based media to communicate with others, 

not only within their own culture, but also with people from other cultures. According to some 

estimates, approximately one-third of daily communication is deceptive (George and Robb, 

2008); thus, it will be safe to assume that with decreasing computers prices and increasing 

diffusion of the Internet, the amount of deception in computer-mediated communication is likely 

to escalate. Some past research in the communication discipline has investigated the ability of 

individuals to detect deception within and across cultures. For example, Al-Simadi (2000a) asked 

Malaysian and Jordanian judges to detect deception from the videotapes featuring Malaysian and 

Jordanian participants. While half of Malaysian participants spoke in Arabic, the other half spoke 
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in English. All Jordanian participants spoke in Arabic. Overall, judges were better able to detect 

deception in the other culture (57% success rate) than within their own culture (52%). 

Surprisingly, Al-Simadi did not report any findings due to language differences. While these 

findings provide evidence that deception can be detected across cultures, they fail to shed light 

on the relationship between language and deception detection.  

While there are a few studies that have examined the impact of language on deception 

detection, these studies did not include participants from multiple cultures. For example, 

Broadhurst and Cheng (2005) investigated the ability of Hong Kong Chinese to detect deception 

in their first language (Cantonese) and second language (English). Participants had higher 

detection rates when their peers spoke in English compared to when they spoke in Cantonese. 

Since Broadhurst and Cheng’s (2005) study consisted of only Hong Kong Chinese participants, 

the findings are difficult to generalize to other cultures.  

Besides looking at the impact of culture and language on deception detection, some 

limited research has also investigated the relationship between media and deception detection. 

For instance, the experiments by Al-Simadi (2000a) and Bond and Atoum (2000) reveal that 

judgments from audiovisual or audio only media are expected to be more accurate than the ones 

made from video only media. On the contrary, Burgoon et al. (2003) suggest that people get 

overwhelmed with the presence of excess cues in audiovisual media, and thus are unable to 

differentiate between truth-telling and lie-telling behaviors. According to them, deception 

detection is likely to be more accurate from audio only media than from audiovisual media. 

These mixed findings in the literature and the lack of studies examining the relationship between 

media and deception detection call for additional research to investigate the relationship between 

different CMC-based media and deception detection. 
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Based on the discussion provided in this section so far, we present two research 

questions: How do CMC-based media (audiovisual, audio only, video only, and text only) impact 

the ability of individuals to detect deception? How do cultural and language differences affect 

the ability of individuals to detect deception across cultures that share a language and cultures 

that do not? To investigate our research questions, we conducted a controlled laboratory 

experiment in which we asked 112 business undergraduate students to judge the veracity of one 

of three stimulus sets featuring either American or Indian students. While all American students 

spoke in English, half of Indian students spoke in Hindi, and the other half spoke in English. 

Each stimulus consisted of 32 snippets (16 honest and 16 dishonest), and each snippet was 

presented in one of four media formats: audiovisual, video only, audio only, and text only. 

In the next section of the paper, we first review the literature on deception, followed by 

the relationship between CMC and deception. Next, we review the literature on culture and 

language as they relate to deception and its detection. Next, we present our hypotheses and 

describe our research methods and data analysis.  The paper ends with a discussion of findings, 

followed by implications for practice and research.  

 

Literature And Hypotheses 

We start this section by first defining deception, which is “a message knowingly 

transmitted by a sender to foster a false belief or conclusion by the receiver” (Buller and 

Burgoon, 1996, p. 205). Though a few researchers like Bok (1978) make a distinction between 

deception and lying, consistent with Vrij (2000) and DePaulo et al. (2003), we use these two 

terms interchangeably in this paper. Studies of deception suggest that people lie for various 

reasons. For example, doctors lie to their patients about dosage (Jackson, 2001; Backhurst, 
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1992), job applicants lie during interviews (Weiss and Feldman, 2006), potential visitors lie 

during visa interviews (Ekman and Matsumoto, 2009), adolescents lie to their parents to express 

a sense of autonomy (Arnett et al., 2004), individuals lie to romantic partners for intimacy 

(Cochran and Mays, 1990), and salespeople lie during trade negotiations to further their own 

personal interests (Aquino and Becker, 2005). Thus, lying is indeed a common social act.  

However, despite lying being such a common occurrence, people in general are poor 

detectors of deception. The likelihood of successfully detecting lies is analogous to flipping a 

coin in which there is an even odds chance (DePaulo et al., 1997; Kalbfleisch, 1994; DePaulo, 

Zuckerman, & Rosenthal, 1980; Vrij, 1994; Millar & Miuar, 1995). Interestingly, even experts 

such as law enforcement personnel and policemen perform no better than laymen when it comes 

to detecting deception (Ekman, 1985). Kohnken (1987) asked police officers to detect lies from a 

mix of honest and dishonest videotapes of eyewitnesses. Despite being instructed to pay close 

attention to leaked verbal (e.g., tone of voice, slip of the tongue) and non-verbal cues (e.g., facial 

expressions, gestures like wringing one’s hands), police officers performed no better than non-

experts. 

One possible reason for this is truth bias, which refers to the tendency of people to trust 

others by default until given a chance or reason to think otherwise (Miller and Stiff, 1993). 

According to Vrij and Baxter (1999), people in general come across more honest statements than 

dishonest statements in everyday life; thus, they tend towards judging others as being more 

truthful than deceitful.  

Another reason that impedes people’s ability to detect deception is their heavy reliance 

on false stereotypes about lying behaviors (Hartwig and Bond, 2011). Despite a plethora of 

studies suggesting that there is no link between eye aversion and lying (e.g., DePaulo et al., 
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2003; Miller & Stiff, 1993; Zuckerman et al., 1981), averting eye contact is still considered the 

most prominent pan-cultural stereotype regarding deceptive behavior (Aavik et al., 2006). Due to 

these challenges, detection deception detection rates rarely exceed chance level. 

However, over the years, a significant amount of research on deception and its detection 

has yielded interesting insights. The majority of this research has linked deception detection to 

the identification of reliable cues to deception. This stream of research has primarily relied on the 

leakage theory, which asserts that deception is such a complicated thing that deceivers often leak 

out cues in the form of verbal and non-verbal behaviors (Ekman and Friesen, 1969; Ekman, 

1985). If people are observant to verbal and non-verbal behaviors of others, deceivers stand a 

better chance of getting caught. While some deception literature follows Darwin’s (1872/1965) 

assumption of universality of facial expressions, researchers like Kraut (1980) argue that verbal 

and non-verbal behaviors of deception are not uniform, as they tend to vary "depending on the 

topic of deception, the cognitive difficulty of the deception, the emotions generated during the 

deceptive attempt and a particular deceiver's limitations" (p. 212). However, in their quantitative 

analysis of 45 studies, Zuckerman and Driver (1985) found some consistency across the studies 

linking behavioral cues to deception. Of the twenty four cues analyzed by them, they were able 

to separate fourteen into truth-telling and lie-telling behaviors. In another study, DePaulo et al. 

(2003), based on their meta-analysis of 120 independent samples, reported 158 different cues to 

deception. Further, they found that liars “tell less compelling tales” and are more tensed than 

truth-tellers (p.74). Similarly, highly motivated liars are expected to give away more non-verbal 

cues (DePaulo and Kirkendol, 1989). 

Besides leakage theory, interpersonal deception theory (IDT), proposed by Buller and 

Burgoon (1996), has received significant attention from scholars interested in studying 
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deception. IDT treats deception as a dyadic interactive communication event between a sender 

and a receiver. According to IDT, deception detection is dependent on many factors, such as 

relationship, motivation, and whether communication is face-to-face (FtF) or mediated. In a 

similar vein, Carlson et al. (2004) suggest that “successful detection of deception is determined 

by the participants involved, their relationship, the design and delivery of the deception, and the 

medium used to convey the communication” (p.14). Thus, communication medium is an 

important factor that may influence successful deception detection. Buller and Burgoon (1996) 

further assert that different media, based on their capability to transmit various social context 

cues, place different kinds of conversational demands on the participants involved in 

communication.  

In face-to-face deception, participants have full access to the range of social information 

available in environmental, visual, auditory, and verbal channels. By contrast, less 

interactive contexts restrict channel and information availability, producing a limited cues 

environment that may alter behaviors and perceptions  

(Buller and Burgoon, 1996, p.212). 
 

Given that different forms of media may influence individuals’ behavior and perceptions 

in different ways that in turn are likely to impact their detection capabilities, it is important to 

first understand the differences among various media forms. 

CMC and deception 

The unique capabilities of the Internet have completely transformed the traditional means 

of communication (e.g., FtF, snail mail) into computer-mediated communication, which is an 

umbrella term that is often used to describe a variety of Internet-based media. One of the early 

definitions of CMC was proposed by Walther (1992), who defined CMC as “synchronous 

[simultaneous] or asynchronous [delayed] electronic mail and computer conferencing, by which 

senders encode in-text messages that are relayed from senders' computers to receivers” (p.52). 
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To completely understand the meaning of this definition and differentiate among various CMC-

based media, it is important to understand the notion of synchronicity. Synchronicity is the extent 

to which individuals can simultaneously work towards achieving common ground (Carlson and 

George, 2002; Dennis et al., 2008). Based on the degree of synchronicity, a medium can be 

classified into either synchronous (e.g., audiovisual based media such as Skype and FaceTime) 

or asynchronous medium (e.g., text-based media such as emails and instant messaging).  

While all cues are available FtF, the number of available cues gets filtered out as the 

communication medium changes from synchronous to asynchronous (Sproull and Kiesler, 1986; 

Adkins and Brashers, 1995; Daft, Lengel, and Trevino, 1987; Walther, 1992). Thus, of all CMC-

based media, a video-based medium is capable of transmitting the maximum number of cues, 

while comparatively fewer cues are revealed in an audio-based medium. Even fewer cues can be 

detected from a text-based medium. Consistent with research discussed so far, Rao and Lim 

(2000) linked a medium’s capability to relay the maximum number of cues to more successful 

deception detection. They further ranked different media across fourteen reliable cues to 

deception that were suggested by Zuckerman and Driver (1984). 

 

Table 1. Cues to deception across various media (Rao and Lim, 2000) 

 
Behavior Video Audio Written Modes 

Visual    

Pupil dilation Detectable   

Gaze    

Blinking Detectable   

Smiling    

Facial segmentation Detectable   

Head movements    

Gestures    

Shrugs    

Adaptors Detectable   

Foot & leg movements    

Postural shifts     

Bodily segmentation Detectable   
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Table 1 continued 

 
Paralanguage    

Latency    

Response length Detectable Detectable Detectable 

Speech rate    

Speech errors Detectable Detectable Detectable 

Speech hesitations Detectable Detectable In real-time interactive 
writing, may be 
detectable 

Pitch Detectable Detectable  

Verbal    

Negative statements Detectable Detectable Detectable 

Irrelevant information Detectable Detectable Detectable 

Self-references    

Immediacy Detectable Detectable Detectable 

Leveling Detectable Detectable Detectable 

General    

Discrepancy Detectable Partially detectable Partially detectable 

 

According to Rao and Lim (2000), every medium is capable of transmitting at least a 

small subset of deceptive cues, and thus deception can be detected across all forms of media such 

that “a written statement may not have nonverbal cues, but inconsistencies in a written narration 

will reveal deception” (p.6). However, a medium’s capability (or synchronicity) to transmit a 

wide variety of verbal and non-verbal cues influences the accuracy of correctly identifying 

deception such that availability of more cues should be translated into higher deception detection 

rates and vice versa (Rao and Lim, 2000). Since people feel more confident while making 

deception judgments from synchronous media than from asynchronous media (Carlson and 

George, 2002), deception detection should be more accurate when the judgments are made from 

video-based synchronous media than the ones that are made from asynchronous media. Based on 

this, we hypothesize: 

H1: Deception detection will be more accurate when the judgments are made from audiovisual 

media than those made from video only, followed by audio only, and text only media. 
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Having developed the hypothesis for our first research question, we next review the role 

of cultural and language in deception detection.  

Impact of culture and language on deception 

Culture is “the  collective  programming  of  the  mind  which distinguishes  the  

members  of  one  human group from another” (Hofstede, 1980, p. 260). According to Hofstede 

(2010), there is no single universal culture, and people around the world have major differences 

in terms of how they think, feel, and act. Studies of deception across cultures (see Table 2) 

indicate that people from different cultures have different beliefs about deception. What would 

be considered deceptive in one culture might not be treated in the same way in another culture. 

For example, making false promises or lying during business negotiations is a common practice 

in collectivistic Asian cultures; however, these practices are considered highly improper in 

individualistic Western cultures (Triandis et al., 2001; Li et al., 2006; Zarkada-Fraser and Fraser, 

2001). Additionally, a corpus of cross-cultural studies indicates that people from different 

cultures significantly diverge in terms of their verbal and non-verbal behaviors. One such 

example is tongue showing. While Europeans use it for teasing, people in Tibet use it as a sign of 

greeting (Feyereisen and de Lannoy, 1991). Another example is “forming an O-shape with the 

thumb and the index finger,” which depending on the culture may either indicate OK, money, 

zero, or an insult (Feyereisen and de Lannoy, 1991, p.7).  

While these examples reflect culture-specific differences, there are certain verbal and 

non-verbal behaviors that accompany the spoken language. For example, while the majority of 

English language speakers express emotional states such as anger and annoyance through the use 

of high intensity tone, the Siouan language, spoken by the Dakota people, “has formal linguistic 

expression by means of a particle added at the end of the sentence” to show their displeasure 
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(Pennycook, 1985, p.269). Similarly, while French and Spanish language speakers use hand 

gestures and other bodily actions to express themselves, British English speakers consider 

gesturing inappropriate (Graham and Argyle, 1975). 

Based on the discussion so far, it can be noted that there are culture-specific and 

language-specific verbal and non-verbal behaviors. A question that can be raised here is: Are 

culture and language two separate entities? According to Brown (1994):  

A language is a part of a culture and a culture is a part of a language; the two are 

intricately interwoven so that one cannot separate the two without losing the significance 

of either language or culture (p.65). 

 

 

Table 2. Deception across cultures 

 

Study Countries Select Findings 

Li, 

Triandis, & 

Yu 

2006 

Singapore 
Positive correlation between deception and collectivism in 

organizational business negotiations 

Seiter & 

Bruschke,  

2007 

China & US 
Americans experienced more guilt over lying than Chinese 

participants.   

Mealy et al 

2007 
Ecuador & US 

Euro-American participants perceived lying to be more 

acceptable than Ecuadorians 

Wang & 

Leung  

2010 

Singaporean 

Chinese, US & 

Taiwan 

Americans prized honest behavior more than they 

reprimanded deceptive behavior; however, East Asians did 

not show any deviation between the two 

Sweet et al 

2010 
China & US 

Chinese children found lying to hide a group’s misbehaviors 

less acceptable than did American children 

Fu et al 

2011 
China & US 

Chinese participants perceived lying more favorably than 

Americans for modest behavior 

Choi et al. 

2011 
Korea & US 

Koreans might perceive lying for a friend less negatively as 

opposed to Americans 

Zhang 

2013 
China & US 

Americans considered emotional deception (intentional 

display of emotions to influence others) more acceptable than 

Chinese negotiators, while Chinese approved the use of 

informational (deliberately misrepresenting the information) 

deception more than American negotiators. 
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Table 2 continued 

 

Heyman et 

al. 2013 
China & US 

Chinese parents (98%) more likely to lie to their children to 

encourage behavioral compliance than American (84%) 

parents 

Hamilton 

& Kirwan 

2013 

Ireland & US 
Online dating profiles of Irish males were found more 

deceptive than American profiles. 

Phan 2014 US 

Collectivistic individuals more likely to use blatant, self-

serving, and altruistic lies than individualistic individuals to 

have sex. Additionally, individualistic individuals more likely 

to lie to avoid confrontation than collectivistic individuals. 

Banai et al. 

2014 

Israel & 

Kyrgyzstan 

Kyrgyzstanis more likely to endorse ethically questionable 

negotiation tactics (i.e., pretending, deceiving, & lying) than 

Israelis. 

 

Table 3. Deception detection across cultures 

Study Countries Select Findings 

Bond et al  

1990 
Jordan & US 

Successful lie detection within cultural groups but not 

across 

Bond & Atoum 

2000 

US, Jordan & 

India 

Lies successfully detected across cultures that share a 

language and cultures that do not 

Al-Simadi 2000 
Jordan & 

Malaysia 

Individuals detected 52% of lies within their own cultures 

& 57% between cultures 

Cheng & 

Broadhurst 2005 

Hong Kong 

Chinese 

Observers better able to identify deception in their second 

language than in native language 

Evans & 

Michael, 2013 
US Hispanics 

Truth detection greater when judging native-speakers; 

deception detection greater when judging non-native 

speakers 

Da Silva & 

Leach 2013 
Canada 

Observers more accurate in detecting truth-telling and 

lying behaviors in native English speakers than second-

language speakers 

 

Despite considerable support pertaining to the inseparability of culture and language in 

linguistic and cross-cultural studies (e.g., Whorf, 1956; Brown, 1994; Jiang, 2000), the existing 

research on cross-cultural deception has either examined the impact of cultural differences on 

deception detection or the role of language differences in detection deception (see Table 3). For 
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example, Al-Simadi (2000a) found that Malaysian and Jordanian participants were more accurate 

at detecting lies in the outside culture (57% success rate) than in their own (52%). Though Al-

Simadi varied the language in the videotapes by asking all of the Jordanian participants and half 

of the Malaysians to speak in Arabic and other half of the Malaysian participants in English, he 

did not report any findings based on language differences.  

In contrast, Cheng and Broadhurst (2005) found that Hong Kong Chinese participants 

were better able to detect deception in their second language, English, than in their first 

language, Cantonese. Though Cheng and Broadhurst’s study provides valuable insights about the 

role of language in deception detection, given that the study consisted of only Hong Kong 

Chinese participants, the findings are difficult to generalize to non-Chinese cultures. Recently, 

two more studies have examined deception detection between native and non-native English 

speakers. While Evans and Michael (2013) found that observers were more accurate in detecting 

lies among non-native English speakers than among native English-speakers, Da Silva and Leach 

(2013) found the opposite. In both these studies, the role of culture was not specifically 

discussed. 

To the best of our knowledge, the only study that investigated the impact of differences 

due to culture and language on deception detection was conducted by Bond and Atoum (2000). 

Although the participants in their study were better able to identify lies outside of their cultural 

group, they did not find significant effects of language on deception detection. While this study 

and another study by Al-Simadi (2000a) indicate deception detection across cultures, as evident 

from Table 3, questions examining the simultaneous impacts of language and culture on 

deception detection remain underexplored. 
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Substantial research in linguistics asserts that, while speaking in their non-native 

language, people are likely to adhere to the speaking styles and the norms (e.g., phonological, 

semantic, syntactic, pragmatic, and prosodic) of their stronger native language (Pika et al, 2006; 

Nicoladis et al., 2005; Efron, 1941; Marcus, 1979; Sherman & Nicoladis, 2004; Ralston et al., 

1995; Nicoladis, 2007; Snyder, 1971). Further, different languages have different paralanguages 

(i.e., the non-verbal elements of the communication) such as pitch, volume, pauses, tone, rhythm, 

stress, and intonation of speech (Duncan, 1969; Houston, 1984). Thus, it is safe to assume that 

speakers of a native language should be able to identify any irregularities whenever non-native 

speakers violate the commonly held norms, styles, and paralanguage elements of the native 

language.  

Given that people, in general, are wary of foreigners (Smith and Bond, 1994) and non-

native speakers have a tendency to stick to the linguistic standards of their native language, 

people are more likely to be suspicious of foreigners when they speak in the native language of 

the judges than when they speak in their own native language. Based on the discussion so far and 

the past evidence that deception detection is likely to be more successful in the outside culture 

compared to within (Al-Simadi, 2000; Bond and Atoum, 2000), we present our second 

hypothesis: 

H2: American judges will be more accurate at detecting deception when exposed to Indians 

speaking in English, followed by Indians speaking in Hindi, and Americans speaking in English. 

 

Methodology 

To investigate the role of media and culture and language on individuals’ ability to detect 

deception, we conducted two controlled laboratory experiments – the pilot study and the main 

study. For both studies, the research design consisted of two distinct phases: 1) creation of 
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stimulus sets featuring American and Indian graduate students, and 2) making the veracity 

judgments. For the pilot study, twenty Indian graduate students were recruited with help from the 

international student association body at a large Midwestern university. During the experimental 

sessions, students were asked to apply for a fictional graduate scholarship. They were told that 

they could enhance their personal achievements or any other information that might increase 

their chances of getting the scholarship. Completed scholarship applications were compared with 

students’ actual résumés and any enhanced information on the scholarship applications was 

marked as dishonest. Interviews were then conducted via Skype and were videotaped with the 

consent of the participants. While half of the Indian participants spoke in Hindi, the other half 

spoke in English.  

The video recordings were then edited to create three stimulus sets, each consisting of 24 

snippets such that half were honest and half were dishonest. Each stimulus set was also varied by 

four media formats: audiovisual, video only, audio only, and text only. Of the 24 snippets, six 

were text only, six were audio only, six were video only (meaning no sound), and the remaining 

six were audiovisual. Text only snippets were the transcribed version of the interview video 

recordings. For Hindi language interviews, the text snippets were translated into English.  In 

total, there were three treatment conditions: 1) Indians speaking in English (or Indian English), 

2) Indians speaking in Hindi (or Indian Hindi), and 3) Americans speaking in English (or 

American English). The American English stimulus set was already available from a previous 

study (George, et al., 2008). 

In the second phase, fifty undergraduate students in a senior-level supply chain course 

from the same university served as judges in the study. Judges were asked to make veracity 

judgments in response to one of the three stimulus sets (American English, Indian English, or 
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Indian Hindi). All of the 24 snippets were presented to the participants in survey instruments, 

which were created using Qualtrics. Participants judged the veracity of each snippet on a 7-point 

Likert scale where “1” meant “very honest” and “7” meant “very dishonest.” The seven-point 

Likert scale was collapsed into a discrete variable such that a selection of 1 to 4 was considered a 

judgment of truth and a selection of 5 to 7 was considered a judgment of dishonesty. Whenever 

judges marked a snippet as being dishonest, in the next screen, they were asked to list the 

indicators that convinced them to judge the person in the snippet as a liar. This process continued 

until all of the 24 snippets were read, listened, or watched. The dependent variable was deception 

detection success, which was the percentage of dishonest snippets that were judged dishonest. 

The results from the pilot study were encouraging. No major technical problems 

emerged. For the main study, another twenty Indian students were recruited and their interviews 

were videotaped. Eight more snippets were added to each of the three existing stimulus sets from 

the pilot study.  Thus, the main study consisted of 32 snippets where 16 were honest, and the 

remaining half was dishonest. Further, of the 32 snippets, there were eight snippets for each of 

the four media types: text, audio, video, and audiovisual. Like the pilot study, the same process 

was followed for the second phase of the main study. Fifty eight undergraduate students in a 

senior-level supply chain and fifty four undergraduate students in management information 

systems courses were asked to make veracity judgments in response to one of three stimulus sets 

on a 7-point Likert scale. 

To keep the participants motivated in both the pilot and the main study, participants in the 

first phase were given $10 gift cards, while participants who served as judges earned 1% course 

credit. Precaution was taken to ensure that none of the judges, who participated in the second 
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phase of the study, knew the participants from the first phase and the participants who served as 

judges in the pilot study did not participate in the main study. 

 

Findings 

A linear mixed-model ANOVA with repeated measures was run in SPSS (version 21) to 

investigate the effects of culture and language, and media on successful deception detection. 

Repeated measure design was chosen because each participant in the second phase of the main 

study was exposed to 32 different snippets. While question number (1-32) was included as a 

random factor, treatment condition (Indian English, Indian Hindi, and American English) and 

media were included as fixed factors. The dependent variable was deception detection success.  

Results revealed significant main effects for media and treatment (i.e., culture and 

language). The interaction effects between media and treatment were also found significant. The 

summary of results is shown in Table 4, and the mean detection success rates for different media 

and treatments are shown in Table 5 and Table 6 respectively. 

 

Table 4. Results of mixed-model 

 

Source Numerator df Denominator df F Sig. 

Intercept 1 3422.152 4956.986 .000 

Media 3 2441.860 7.030 .000 

Treatment 2 3421.187 16.418 .000 

Media * Treatment 6 2187.190 4.012 .001 

Dependent Variable: Deception detection success 
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Table 5. Deception detection success rates for different media 

 

Media Mean Standard 

Error 

Text only 55.5% . 016 

Audio only 63.5% . 016 

Video only 53.5% . 016 

Audiovisual 57.9% . 016 

 

Table 6. Deception detection success rates for different treatments 

 

Treatment Mean Standard 

Error 

Indian English 63.3% .014 

Indian Hindi 57.8% .014 

American English 51.8% .014 

 

Overall, the detection success rate was 55.5%, which was better than chance. To test our 

hypotheses, we conducted the Bonferroni test to compare the detection rates across different 

media and treatments. The pairwise comparisons for media found audio only media (M = 63.5%, 

SE = .016) to be statistically different from text (M = 55.5%, SE = .016) and video only media 

(M = 53.5%, SE = .016); however, no other statistically significant pairwise differences were 

observed. Though mean detection success rate for audiovisual (M = 57.9%) was more than video 

only and text only media, the Bonferroni test did not suggest any significant differences between 

the three. Based on the leakage theory and the notion of synchronicity, we had proposed that 

individuals would be more accurate at detecting deception from audiovisual media than from 

video only, followed by audio only, and text only media. Since participants were better able to 

detect deception from audio only media compared to either text only or video only media, the 

ranking proposed in H1 was not supported.  

For treatment conditions, the Bonferroni test revealed significant differences between all 

of the three treatments. Participants were more accurate in detecting deception from the stimlus 
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sets featuring Indians speaking in English (M = 63.3%, SE = .014) than Indians speaking in 

Hindi (M = 57.8%, SE = .014), followed by Americans speaking in English (M = 51.8%, SE = 

.014). Thus, H2 was supported. 

To show the interaction effects between media and treatment conditions, we plotted the 

detection success rates against the treatment conditions for each media type. Careful analysis of 

the plot suggests that for the snippets presented in text only and video only media, detection rates 

were highest for American English, followed by Indian Hindi, and Indian English. For 

audiovisual media, the Indian Hindi treatment was different than both American English and 

Indian English treatments. The most surprising observation from the plot was for audio only 

media, which followed a straight parallel line to the x-axis, suggesting no major difference in 

detection success rates across the three treatments. This suggests that for American participants, 

deception detection success for audio only snippets did not vary by treatment.  

 

Figure 1. Interaction between Media and treatment 
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Discussion 

We initially hypothesized that successful detection of deception would be influenced by 

media’s capability to transmit a wide variety of verbal and non-verbal cues. Based on this, we 

expected that the deception detection rates would be highest for the judgments made from 

audiovisual media, followed by video only, audio only, and text only media. However, this 

ranking was not supported. As shown in Table 5, the findings indicate that detection rates are 

likely to drop as we move from audio to audiovisual to either text or video only media. 

Interestingly, the lower detection success from audiovisual media compared to audio only media 

may be due to the seeing is believing visual bias, whereby people get overwhelmed by the excess 

visual information, resulting in greater levels of truth bias (Burgoon et al., 2003). “Therefore, 

more is less,” and thus deception detection accuracy is likely to be greater when the judgments 

are made from an audio only medium than from an audiovisual medium (Burgoon et al., 2003, 

p.10). While there were differences in the mean detection success rates across the four media, 

only audio media was found statistically different from text and video only media. This implies 

that, of the three media (audio, text, and video only), individuals have the best chance to detect 

lies from audio only media.  

Consistent with previous research (Bond and Atoum, 2000; Al-Simadi, 2000a), we not 

only found that participants were better able to detect deception in the outside (Indian) culture 

than within their own (American) culture, but also, as hypothesized, the deception detection rates 

were more accurate when Indian participants spoke in their second (English) language than when 

they spoke in their native (Hindi) language. To gain some more insights about the cues on which 

the judges relied while making the veracity judgments, we reviewed the responses entered by the 
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judges for each of the three treatments and complied them based on the most reliable to least 

reliable cues to deception (see Table 7).  

While judges relied on almost the same cues to identify deception across the three 

treatment conditions, the ranking of these cues from most reliable to least reliable varied across 

treatments. For example, the use of incorrect grammar by Indians speaking in English was often 

linked to deceptive behavior; however, it was not an important cue while judging Americans 

speaking in English. Surprisingly, the top three cues to deception, regardless of the treatment 

conditions, were fidgeting, no eye contact, and pauses. While judging Americans, Americans 

paid more attention to fidgety behavior than pauses; on the other hand, they relied more on 

pauses than fidgety behavior to detect deception among Indians. Similarly, changes in tone were 

found to be a more reliable cue while judging Indian participants than while judging Americans.  

In sum, though judges relied on same set of cues to detect deception across the three 

treatments, their reliance on these cues differed when the judgments were made within the same 

culture and when they were made in the outside culture. Reliance on cues also differed between 

Indian English and Indian Hindi treatments. For example, stuttering was considered an important 

indicator of lying behavior for Indians speaking in Hindi; however, it was less often linked to 

deception for Indians speaking in English. 

 

Table 7. Most reliable to least reliable deceptive cues 
 

American English Indian English Indian Hindi 

Fidgeting No Eye Contact No Eye Contact 

No Eye Contact Pauses/ Hesitant Pauses/ Hesitant 

Pauses/ Hesitant Fidgeting Fidgeting 

Voice Stuttering Poor Grammar Voice Stuttering 

Contradicting reply Tone Tone 

Tone Repetitive/Wordy reply Short Answer 
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Table 7 continued 

 

Rehearsed reply Contradicting reply Body Language 

Repetitive/Wordy reply Short Answer Blinking 

Short Answer Voice Stuttering Poor Grammar
*
 

Body Language Body Language Repetitive/Wordy reply 

Poor Grammar Blinking Contradicting reply
*
 

Blinking Biting Lips Laugh/ Smile 

Eye brows movement Laugh/ Smile Biting Lips 

Laugh/ Smile The use of “we” as 

opposed to “I” 

Rehearsed reply 

The use of “we” as 

opposed to “I” 

Rehearsed reply Eye brows movement 

Biting Lips Eye brows movement The use of “we” as 

opposed to “I” 
*
 

* Only for text-based snippets 

 

Implications 

This study investigated the effects of media, and culture and language on deception 

detection success. Previous research suggests that approximately one-third of our daily 

communication involves some form of deception, and the likelihood of correctly identifying 

deception rarely exceeds 50% (George and Robb, 2008). With the advent of the Internet, 

individuals nowadays are often involved in communication with people from other cultures. 

Therefore, it is not only important to understand the process of deception and its detection within 

the same culture, but also across cultures. Additionally, rapid globalization has led to the 

increased migration of people around the world such that immigrants, in general, are required to 

communicate in the language of the foreign country. Our findings suggest that, by examining 

irregularities in the speaking styles of non-native speakers, native speakers are capable of 

detecting deception in the outside culture. 

Not only it is imperative to understand deception and its detection across cultures, but 

also, given that CMC-based media have become so ubiquitous that anyone with the Internet 
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connection and a computer or a smart phone can connect to another person regardless of his or 

her geographical location, there is a real and practical need to understand the relationship 

between media and deception detection. Contrary to the common assumption that links media 

capability to transmit more cues to higher deception detection rates, we found that American 

judges made more accurate judgments from audio only media, compared to text and video only 

media. Too few cues in video only and text only media seem to impede judges’ ability to 

correctly identify deception.  

Additionally, the investigation of interaction effects between media, and culture and 

language reveal that, while the judgments made from non-audio only media (audiovisual, text 

only, and video only) differ considerably across treatment conditions (American English, Indian 

English, and Indian Hindi), the ones made from the audio only media have a near constant 

detection success rate. This implies that culture and language of the participants did not 

significantly impact the detection success of judges in the audio mode.  

This study also has implications for research. The literature on deception and its detection 

has primarily focused on real-time FtF conversations. While the insights from this literature are 

interesting, due to the pervasiveness of CMC-based media in today’s world, future research 

pertaining to deception and its detection should include CMC. This study is an early attempt in 

that direction. Furthermore, concerns about the lack of cross-cultural research have often been 

raised in the MIS discipline (Galliers and Meadows, 2003); thus, by simultaneously looking at 

the role of several CMC-based media and culture on deception detection, we have taken a small 

step to address the concerns of parochialism in the field of information systems research. 

While there have been several studies (see Table 2) that indicate that beliefs about 

deception and non-verbal cues to deception are culture-specific, the research investigating the 
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ability of individuals to detect deception within and between cultures has been scarce (see Table 

3). Thus, by comparing the deception detection capabilities of American participants within their 

own culture and in the outside Indian culture, we have made a significant contribution to the blue 

ocean stream of research that suggests people are better able to detect deception in outside 

culture compared to their own. Additionally, contrary to the stream of research that treats culture 

and language as two separate entities, we considered culture and language tightly intertwined 

with each other. While Bond and Atoum (2000) and Al-Simadi (2000) provided evidence of 

successful deception across cultures, the impact of language on judgment success was either not 

found to be significant or not reported in the respective studies. The findings from this study not 

only suggest that people can detect deception across cultures, but also the likelihood of detection 

success increases when people make judgments of deception across cultures that share a 

language. 

Limitations and future research 

Our study is not without limitations. First, findings from this study largely depend on the 

experimental task that involved making judgments from the stimulus sets. The stimulus sets were 

carefully reviewed and edited to ensure an appropriate level of difficulty associated with judging 

a snippet. We followed the guidelines of Jarvenpaa (1985), who suggest that experimenters must 

pay considerable attention to the development of the task such that participants do not find it too 

complex to understand. Second, the American participants, who served as judges, came from the 

same university, thereby limiting the generalizability of the findings. Third, the study examined 

differences between only two cultures and two languages; thus, more research is needed to 

further validate the findings from this study. Future research should consider adding more 

cultures and including judges from multiple locations. Fourth, to examine the effects of media on 
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deception detection, we varied media by four different modes: text only, audio only, video only, 

and audiovisual; however, there are media such as instant messaging (IM) that permit individuals 

to use emoticons to express their emotions through the use of graphical representations of smiles, 

winks, and sad and frown faces (Setlock et al., 2004). Additionally, many video-based media 

(e.g., Google chat, Yahoo messenger) enable participants to simultaneously use text-based chat 

along with audiovisual or audio only communication. Thus, one interesting avenue for future 

research would be to examine the relationship between multiple media choices and successful 

deception detection (Watson-Manheim and Belanger, 2007). 

 

Conclusion 

This study investigated the following research questions: How do CMC-based media 

(audiovisual, audio only, video only, and text only) impact the ability of individuals to detect 

deception? How do cultural and language differences affect the ability of individuals to detect 

deception across cultures that share a language and cultures that do not? Our findings indicate 

that communication media have significant impact on individuals’ ability to detect deception. 

Deception detection was more accurate when individuals made judgments from audio only 

media compared to when they were asked to make judgments from other media formats. Our 

study also suggests that culture and language plays an important role in detecting deception. 

Individuals were better able to detect deception among members of the other cultural group than 

among the members of their own cultural group.  Further, judges were more accurate in detecting 

lies among non-native English speakers than among native English speakers. 
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CHAPTER 3. THE IMPACT OF ORGANIZATIONAL CULTURE ON AGILE 

PRACTICES 

 

 

Abstract 

Much of the existing research on agile software development (ASD) methodologies has 

primarily focused on proposing the ideal organizational culture for the adoption of agile 

practices. Given that organizations in different industrial sectors have successfully embraced 

ASD, this study argues that ASD can be implemented in a range of organizational cultures. 

Specifically, this study conceptualizes ASD practices into technical and social dimensions and 

examines how they are impacted by different forms of organizational culture. Another major 

shortcoming of the extant research on software development methodologies (SDM) is the use of 

several constructs to measure the benefits of using new SDMs. This study proposes 

organizational creativity as the main dependent variable to assess the benefits of using ASD. 

Based on the survey of 225 senior-level agile practitioners, our study found that ASD can be 

followed in different organizational cultures. We also found support that both technical and agile 

practices have a positive influence on organizational creativity. Finally, some support was found 

that organizational culture impacts technical and social dimensions of ASD differently. 
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Introduction 

Over the years, organizations in all industries have increasingly faced uncertainty in their 

external environments (Castrogiovanni 2002). Such uncertainty affects customers’ needs and 

expectations thereby causing rapid changes in system requirements during the information 

systems development(ISD) process (Tiwana 2010; Tiwana and Keil 2009).  To cope with 

environmental uncertainty, organizations must learn to be flexible in their ISD process. The 

slowness and inflexibility of traditional systems development methodologies (SDMs) to react to 

the challenges posed by increased environmental uncertainty led to the advent of agile systems 

development (ASD) (Hong et al. 2011). ASD is characterized by frequent software releases, 

incremental development cycles, and high levels of collaboration and communication between 

business people and technical staff. 

While research on ASD dates back to the 1990s, it was not until after the publication of 

the Agile Manifesto in 2001 that agile methodologies garnered considerable attention from 

academics (Abrahamsson et al. 2003; Beck et al. 2001; Dybâ and Dingsoyr 2009; So and Scholl 

2009). In the past decade, scholars have furthered this research by focusing on the barriers to 

ASD. Organizational culture is one such barrier that is often cited as a significant challenge in 

the adoption of agile practices (Lindvall et al. 2002; Tolfo et al. 2011). Consequently, substantial 

research on ASD has concentrated on proposing the ideal agile culture, which is people-centered 

and collaborative (Cockburn and Highsmith 2001), democratic (Siakas and Siakas 2007),  less 

formalized and non-hierarchical (Strode et al. 2009), and has an appropriate reward system 

(Derby 2006). 

According to this stream of research, “if the culture is not right, then the organization 

cannot be agile” (p.203) (Lindvall et al. 2002); however, a recent ethnographic work of Robinson 
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and Sharp (Robinson and Sharp 2005a)found eXtreme programming, a type of ASD 

methodology, to be thriving in three fundamentally different organizational settings (a large 

multi-national bank, a medium-sized software company, and a small start-up). Given that this 

study involved only three organizations, more research is needed to suggest that there is no one 

ideal agile culture and agile practices can be embraced in a wide range of organizational cultures. 

Apart from erroneously advocating for the optimal agile culture, the existing ASD 

research has some major shortcomings. First, scholars have primarily focused on the technical 

side of agile development (Hong et al. 2011; Maruping 2010; Maruping et al. 2009) thereby 

ignoring the human and social aspects associated with ASD (Agerfalk et al. 2009; Robinson and 

Sharp 2005b; So and Scholl 2009). We address this shortcoming by conceptualizing agile 

practices into technical and social dimensions. While engineering-based systems development 

practices, which are specifically related to software coding, are termed as technical agile 

practices, social interactions-based management practices are considered social agile practices.  

Second, the majority of ASD research has been conducted either using case studies (Cao 

et al. 2012; Strode et al. 2009; Tolfo and Wazlawick 2008) or ethnographic studies (Robinson 

and Sharp 2005a). In general, case studies are well-suited for research phenomena that do not 

have a strong theoretical foundation (Benbasat et al. 1987). With a growing body of literature on 

ASD, we believe it is time to move away from how and why forms of research questions, which 

case studies tend to answer, to how much and what question forms, which can be efficiently 

answered by survey methods (Yin 2009). The recent development of survey instruments for 

assessing agile practices usage demonstrates that scholars now have well-defined dependent and 

independent variables pertaining to ASD (Maruping et al. 2009; So and Scholl 2009). Another 

limitation of the extant research is in its choice of the unit of analysis, which  has either been a 
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project or a team (Cao et al. 2012; Chow and Cao 2008; Maruping 2010; Maruping et al. 2009; 

Robinson and Sharp 2005a; Sharp and Robinson 2008). Recent trends indicate that 

organizations, such as Deere & Company, Nokia, State Farm Insurance, and ThoughtWorks, 

have adopted agile practices across their IT departments (agilescout 2011; Lindvall et al. 2004; 

Thibodeau 2012). Therefore, this study measures all the variables of interest at an IT department-

level rather than at a project or a team-level. 

In addition to this, a number of constructs have been used in the ISD literature to assess 

the benefits of adopting new SDMs, yet it remains a challenging task to illustrate their paybacks 

in terms of productivity and efficiency (Iivari and Huisman 2007). Given that ISD is a highly 

creative process in which novel ideas, designs, solutions, and artifacts are often produced (Ocker 

et al. 1995), we propose that the outcome of using a new SDM such as ASD should be measured 

in terms of creativity (or IT department’s creativity). Creativity refers to the novel, valuable, and 

useful outcome of a complex social system such as the ISD process (Woodman et al. 1993). 

Since we have conceptualized ASD into technical and social dimensions, this study proposes and 

investigates the impact of technical and social agile practices on creativity. 

Based on the gap and shortcomings discussed, this study addresses the following research 

questions: 1) What is the extent to which different forms of organizational culture, when applied 

to IT departments, impact the use of technical and social agile practices? 2) How do technical 

and social agile practices positively influence an IT department’s creativity?  

The rest of the paper is structured as follows: We begin with a review of relevant 

literature pertaining to ASD, organizational culture, and creativity. We then present our 

hypotheses.  Next, we describe our research methods and data analysis.  The paper ends with a 

discussion of findings, followed by implications for practice and research. 
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Literature And Hypotheses 

Agile systems development 

ASD was specifically devised for today’s high velocity markets where speed and agility have 

become extremely important for organizations (Takeuchi and Nonaka 1986). Unlike traditional 

waterfall SDMs, which are well-suited for stable and predictable markets, ASD facilitates the 

development and release of software products in Internet time. ASD allows changes in 

customers’ requirements even late in the development cycle and  promotes effective 

communication among individuals involved in the ISD process (Beck et al. 2001). Thus, ASD is 

radically different from traditional SDMs (see Table 1). 

 

Table 1. ASD versus Traditional Systems Development (Hong et al. 2011) 

 

  Agile Systems Development Traditional Systems Development 

Applicable context More fluid user requirements Relatively stable user  

requirements 

Identification of user 

requirements 

Users are constantly  

solicited for new  

requirements; emphasis  

on adaptivity to changing  

environments 

User requirements are  

typically identified at the  

start of the development  

cycle, with emphasis on  

planning and predicting 

Number of 

development cycles 

Many short development  

cycles 

One long development cycle 

Development steps 

with each 

development cycle 

Rigid steps Rigid steps 

Functions available 

when the systems is 

first built 

System only provides a  

limited set of functions  

when first released 

System is expected to deliver  

a full set of functions when  

first released 

Goal in each 

development cycle 

Each release has limited  

scope, i.e., each release  

delivers only a few  

valuable functions 

A major release that comes  

with a complete set of  

functions 
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Agile practices were first documented in the Agile Manifesto by a group of seventeen 

accomplished software developers (Beck et al. 2001). The focus of this group was to uncover 

better ways of developing software. While there is a range of systems development approaches 

that fall under the umbrella of ASD methodologies, such as test-driven development (TDD), 

eXtreme programming (XP), feature-driven development (FDD), Scrum, dynamic systems 

development method (DSDM), and lean programming, they all adhere to the four core values: 

(1) individuals and interactions over processes and tools, (2) working software over 

comprehensive documentation, (3) customer collaboration over contract negotiation, and (4) 

responding to change over following a plan (Beck et al. 2001). Of the several ASD 

methodologies, XP has so far been the most widely-adopted (Cao et al. 2009; Maruping 2010; 

Maruping et al. 2009). XP is an engineering methodology that provides strong guidelines for 

developing high quality software (Mar and Schwaber 2002). It mainly focusses on the technical 

side of ISD and thus offers limited insights into the social side of ISD, causing a disconnect 

between management and developers (Mar and Schwaber 2002). To bridge this disconnect, XP 

is often complemented with Scrum, a social-engineering based agile methodology (Schwaber 

and Beedle 2002).  

Although both XP and Scrum prescribe the same core values of the Agile Manifesto, XP 

practices, such as pair-programming, unit testing, continuous integration, refactoring, collective 

ownership, and coding standards (see Table 2 for definitions), are targeted towards the 

development of quality software while keeping it flexible for incorporating future changes that 

may arise due to changing customers’ needs (Beck and Andres 2004). Scrum, on the other hand, 

facilitates frequent interactions and effective collaboration among the customer, management, 

and developers (Hummel 2013). Scrum mainly consists of three practices: daily standup, 
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retrospectives, and access to the product owner. Daily standups enable knowledge sharing and 

dense communication between technical and management staff. Retrospective meetings identify 

the challenges and issues faced in the past development cycle and how they should be effectively 

dealt with in future (Sutherland and Schwaber 2007). Additionally, Scrum has an important role - 

the product owner - the person who represents the customer and, in some cases, can be an actual 

customer. 

While both XP and Scrum are agile methodologies, the former is engineering-based or 

technical in nature, while the latter is more socially-oriented. In the past decade, organizations in 

different industries have successfully adopted technical and social agile practices across their IT 

departments; however, organizations tend to adopt the practices that best suit their ISD needs 

(Fitzgerald et al. 2006; Lindvall et al. 2004; Sutherland and Schwaber 2007).  For example, Intel 

in Shannon, Ireland employs a mix of technical (XP) and social (Scrum) practices in their ISD 

(Fitzgerald et al. 2006). Consistent with this and given that technical practices are often 

complemented with social practices (Schwaber and Beedle 2002), this study focuses on a mix of 

six widely-used technical (XP) (Maruping et al. 2009) and three widely-adopted social (Scrum) 

agile practices (So and Scholl 2009) (see Table 2). 
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Table 2. Description of Agile Software Development Practices 

 

Dimension Agile Practice Description Reference 

Technical 
Pair-

programming 

All production code is written with two 

programmers at one machine (p.48). 
(Beck 2006) 

Technical Unit testing 

Programmers continually write unit tests, 

which must run flawlessly for development 

to continue (p.48). 

(Beck 2006) 

Technical 
Continuous 

Integration 

Integrate and build the system many times a 

day, every time a task is completed (p.48). 
(Beck 2006) 

Technical Refactoring 

 The design of the system is evolved 

through transformations of the existing 

design that keep all the tests running (p.71). 

(Beck 1999) 

Technical 
Collective 

Ownership 

Every programmer improves any code 

anywhere in the system at any time if they 

see the opportunity (p.71). 

(Beck 1999) 

Technical 
Coding 

Standards 

Programmers write all code in accordance 

with rules emphasizing communication 

through the code (p.48). 

(Beck 2006) 

Social 

Customer/ 

Product Owner 

Role 

The person responsible for articulating the 

product vision. This person actively works 

with other members to clear any issue 

pertaining to product features/requirements 

during systems development. He/she is the 

voice of the customer/end-user.  

 

 (Sutherland 

and 

Schwaber 

2007) 

Social Daily Standup 

A short meeting (time-boxed to 15 minutes) 

that takes place every day at the same time 

in which individuals give a daily status of 

their assigned tasks.  

(Sutherland 

and 

Schwaber 

2007) 

Social Retrospectives 

A meeting that is used to discuss questions 

such as "what went wrong" and "what went 

well" in the past development cycle. It 

helps identify "what could be improved" in 

future development cycles. 

 (Sutherland 

and 

Schwaber 

2007) 
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Organizational culture 

Culture is a major focus of research in organization behavior-related studies and is often 

considered a major barrier to “determining patterns of IT development, adoption, use, and 

outcomes” (p.381) (Hatch 2012; Iivari and Iivari 2011; Leidner and Kayworth 2006). A 

substantial amount of research calls culture a complex construct since it encompasses nearly all 

areas of an organization (Iivari and Huisman 2007). Further, organizational culture has been 

defined in numerous ways. While House et al. (2002) assert that organizational culture reflects 

commonly used terminology, shared organizational values, and organizational history, Dowling 

(1993) calls it a glue, which keeps an organization together.  

In addition to its several definitions, organizational culture is considered to exist at many 

levels. Schein (1990b) defines organizational culture at three levels: artifacts, espoused values, 

and basic underlying assumptions. While artifacts exist at the surface level and thus represent 

tangible and visible aspects of organizational culture such as the physical layout and the dress 

code, assumptions reflect the hidden characteristics of organizational culture such as employees’ 

perceptions, feelings, and behaviors (Schein 1990b). Espoused values lie between artifacts and 

assumptions and they describe organizational norms, ideologies, and philosophies through which 

employees perform their day-to-day tasks. 

This study defines organizational culture in terms of values because of the challenges 

associated with the measurement of artifacts and assumptions. Assumptions are deep-rooted in 

an organization’s history, implying they can only be studied through intensive observations 

(Schein 1990b). Artifacts, though highly visible, cannot be interpreted correctly without 

decoding the underlying assumptions (Schein 1990b). Thus, it is not surprising that the two 

widely-cited frameworks of culture – Hofstede’s (1980) and Quinn and Rohrbaugh’s (1983) -  
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are both based on the values’ perspective. Moreover, Schein (1990a) indicates that espoused 

values, in comparison with artifacts and assumptions, can be easily measured via surveys. While 

Hofstede’s framework is based on national culture, Quinn and Rohrbaugh’s competing values 

framework (CVF) focuses on organizational culture. Since we are primarily interested in 

organizational culture, when applied to IT departments, this study uses CVF. CVF is a well-

accepted framework of organizational culture and has been actively used in the studies of 

management information systems, especially in the ones pertaining to ISD (Huang et al. 2003; 

Iivari and Huisman 2007; Iivari and Iivari 2011; Ngwenyama and Nielsen 2003; Strode et al. 

2009).  

 

Organizational culture and ASD 

CVF is based on the two pairs of competing values (or dimensions): (1) internal focus 

versus external focus and (2) flexibility versus stability. While one describes whether an 

organization values the welfare of its employees (i.e., internal focus) versus the welfare of the 

organization itself (i.e., external focus) (Quinn and Rohrbaugh 1981; Quinn and Rohrbaugh 

1983), the other differentiates organizations based on the degree of structure (i.e., flexibility 

versus stability) (Quinn and Rohrbaugh 1981; Quinn and Rohrbaugh 1983).We first discuss the 

differences between internally-focused and externally-focused organizational cultures.  

Internally-focused organizations tend to establish harmony among employees by 

developing a family-like culture, while externally-focused organizations stress  continuous 

competition with rival firms (Denison and Spreitzer 1991). Simply put, internal focus describes 

the extent to which an organization values its employees’ personal feelings, likes and dislikes, 

whereas external focus reflects an organization’s disposition to minimizing individuality and 
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emphasizing growth of the organization as a whole (Quinn and Rohrbaugh 1981; Quinn and 

Rohrbaugh 1983). According to Cameron (2006), the basic difference between the competing 

ends of this dimension lies in terms of how different organizations pursue value creation. 

Externally-focused organizations tend to be highly competitive because they are constantly 

evaluating and identifying future trends in and out of their principal industry (Cameron 2006). 

These organizations closely follow the activities of their competitors and strive hard to 

outperform them.  

Given that technical agile practices enable organizations to quickly respond to the 

changes due to environmental uncertainty, a culture that values competitiveness and 

experimentation is likely to promote technical practices. Technical practices advocate that all 

software code should be developed by a pair of software developers per some agreed-upon 

standards, resulting in the creation of best technical designs and architects (Fowler and 

Highsmith 2001). These excellent designs and other technical artifacts make the ISD process 

highly flexible, especially when new requirements are proposed either due to changing 

customers’ needs or evolving priorities. An organization that follows technical agile practices is 

relatively well-equipped to respond to the alterations caused in the external environment. Based 

on this, we suggest:  

H1: Externally-focused organizational culture will have a positive impact on the use of 

technical agile practices. 

While technical practices allow organizations to be competitive by allowing flexibility in 

the ISD process, internally-focused organizations are more concerned about creating value by 

enhancing their internal competencies rather than following the activities of their rivals (p.9) 

(Cameron 2006). Thus, it is likely that these organizations, due to their internal focus, may not 
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perceive value in adopting technical practices. Further, employees in these organizations are 

more comfortable performing familiar tasks rather than trying new activities or processes 

(Cameron 2006). Given that technical practices, such as pair-programming, refactoring, 

continuous integrations, collective ownership, and unit testing, require significant shift from the 

values prescribed by the traditional SDMs, employees in internally-focused organizations might 

be less willing to alter their existing ISD process. Therefore: 

 

H2: Internally-focused organizational culture will have a negative impact on the use of 

technical agile practices. 

 

The second pair of competing values, consisting of flexibility and stability,  differentiates 

organizations based on their structure (Quinn and Rohrbaugh 1983). While stability implies 

controlled or bureaucratic organizational structure, flexibility reflects an organization’s ability to 

overcome organizational inertia by continuously changing and adapting. This pair makes a 

distinction between organic and mechanistic organizations (Burns and Stalker 1961; Denison and 

Spreitzer 1991). More than five decades  earlier, Burns and Stalker (1961) suggested that 

organizations adopt organic structure by removing hierarchical barriers and providing a 

workplace environment in which individuals, regardless of their job titles, are free to interact and 

express their views with each other.  

Communication patterns in organic organizations are similar to friendly discussions 

rather than formal orders (Lawrence and Lorsch 1967). As tasks become more complex, the need 

for increased levels of communication and member participation becomes critical for an 

organization to survive (Lawrence and Lorsch 1967). ISD is one such complex process that 
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requires participation of several individuals and effective communication among them (Tiwana 

and McLean 2003). Social agile practices, such as daily standups, retrospective meetings, and 

access to the product owner, remove communication barriers by allowing everyday interactions 

between technical and management staff. These social interactions enable individuals to clarify 

system requirements, share their expertise, and update each other about the overall systems 

development progress. Given that flexible culture encourages equal member participation and 

face-to-face interactions, we propose: 

H3: Flexible organizational culture will have a positive impact on the use of social agile 

practices. 

Organizations that are conducive to stability tend to structure (or control) their 

communication patterns. These organizations follow authoritative top-down leadership style in 

which employees are expected to adhere to the instructions of their superiors. Since member 

participation and employee interactions are essential for the ISD process when social agile 

practices are followed, a controlled organizational culture will likely to discourage their usage. 

Daily standup, retrospective meetings and access to the product owner provide several 

opportunities to individuals involved in the ISD process to interact on daily basis. Thus, a culture 

that promotes vertical communication rather than lateral communication is less likely to use 

social practices.  

H4: Stable organizational culture will have a negative impact on the use of social agile 

practices. 

We have thus far specifically focused on the two competing dimensions (internal focus 

versus external focus and flexibility versus stability) of organizational culture; however, the 

intersection between these two pairs generates four different forms of organizational culture (see 
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Figure 1). Per CVF, quadrant I represents group culture, which is flexible and internally-focused. 

A group culture-oriented organization is concerned about its employees and promotes openness, 

teamwork, consensus, and participation (Cameron and Quinn 2011). Quadrant II signifies 

developmental culture, which is characterized by an external focus and a flexible structure. This 

culture is forward-looking and places a high premium on expansion and exploring new growth 

opportunities (Denison and Spreitzer 1991). Quadrant III shows rational culture, which lies at the 

intersection of external focus and stability. This form of organizational culture stresses 

performance, goal accomplishment, efficiency, and achievement (Cameron and Quinn 2011). 

Quadrant IV denotes hierarchical culture, which emphasizes uniformity and stability in the 

internal environment of an organization.  

The advantage of using CVF is that it does not only allow us to focus on the two widely-

discussed dimensions of organizational culture, but also on  the intersection between the two. 

While we initially proposed our hypotheses (H1-H4) in terms of internal focus (versus external 

focus) and flexible (versus stable) values, these hypotheses can be further expressed in terms of 

of group culture (quadrant I), developmental culture (quadrant II), rational culture (quadrant III), 

and hierarchical culture (quadrant IV) (see Figure 1 and Table 3).  
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Figure 1. Relationship between culture and agile practices 

 

Table 3. Reframed hypotheses in terms of four cultural forms 

Initial  

Hypotheses 

Reframed  

Hypotheses 

H1: Externally-focused organizational 

culture will have a positive impact 

on the use of technical agile 

practices. 

H1a: Developmental culture will have a 

positive impact on the use of 

technical agile practices. 

H1b: Rational culture will have a 

positive impact on the use of 

technical agile practices. 

H2: Internally-focused organizational 

culture will have a negative impact 

on the use of technical agile 

practices. 

H2a: Group culture will have a negative 

impact on the use of technical agile 

practices. 

H2b: Hierarchical culture will have a 

negative impact on the use of 

technical agile practices. 

H3: Flexible organizational culture will 

have a positive impact on the use of 

social agile practices. 

H3a: Group culture will have a positive 

impact on the use of social agile 

practices. 
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H3b: Developmental culture will have a 

positive impact on the use of social 

agile practices. 

H4: Stable organizational culture will 

have a negative impact on the use of 

social agile practices. 

H4a: Rational culture will have a 

negative impact on the use of social 

agile practices. 

H4b: Hierarchical culture will have a 

negative impact on the use of social 

agile practices. 

 

Organizational creativity 

Organizational creativity is defined as “the creation of valuable and useful products, 

services, ideas, or procedures by individuals working together in complex social settings” 

(p.293) (Woodman et al. 1993). A substantial amount of literature suggests that creativity is 

closely related to innovation; however, there is a subtle difference between the two in an 

organizational sense (Woodman et al. 1993; Zhou and Shalley 2007). While creativity refers to 

the process of producing new ideas or developing efficient ways of doing a particular 

organizational task, innovation refers to the successful introduction of creative ideas (Gurteen 

1998; Rogers 1998; Woodman et al. 1993). Thus, creativity is necessary, but not sufficient for 

guaranteeing innovation (Amabile 1996).  

The process of innovation does not pertain to where the creative ideas were first invented; 

instead, the main purpose behind their implementation is to increase organizational performance 

(Rogers 1998). Organizational creativity is an outcome of doing something unique that has not 

been done earlier (Amabile 1996). Moreover, an idea can be termed creative only after it was 

evaluated by experts (Amabile 1996). For example, poets are capable of assessing the degree to 

which poems are creative, while graduate-level business students can evaluate the creativity of 

solutions to business problems (Amabile 1996).  
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Creative ideas are often generated during the development of complex systems (e.g., 

aircrafts, autos, and computers) (Kazanjian et al. 2000). It is the uncertainty surrounding the final 

outcome (or deliverable) that makes the development of these systems highly complex 

(Kazanjian et al. 2000). In this study, we are interested in the creative outcome of one such 

complex process - the ISD process. ISD is considered complex because it not only converts 

abstract ideas into tangible features, but it also requires several individuals to work together and 

share their technical know-how, skills, and insights with each other (Ocker et al. 1995; Tiwana 

and McLean 2003).  

As organizations continue to face uncertainty in their external environments, they are 

under constant pressure to develop information systems for novel business requirements and 

unexplored problem domains (Tiwana and McLean 2003). ASD enables organizations to address 

the challenges posed by turbulent environments and be creative at the same time (Tolfo et al. 

2011). The use of simpler non-rigid technical practices over complicated traditional processes 

increases the creativity of the ISD process (Fowler and Highsmith 2001). Technical agile 

practices, such as pair-programing, continuous integration, refactoring, unit testing, collective 

ownership, and coding standards, facilitate the development of high quality software, leading to 

the creation of novel, valuable, and useful technical artifacts (Beck and Andres 2004; Fowler and 

Highsmith 2001). These creative technological artifacts make the ISD process flexible such that 

unplanned requests from the customer can be efficiently addressed without impacting the 

development of the overall system. Based on this, we propose: 

H5: Technical agile practices usage will have a positive impact on the creativity of an IT 

department. 
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One of the primary criticisms of the traditional SDMs is minimal or no feedback between 

the phases of a software development life cycle (SDLC). The traditional software development 

lifecycle was suggested in terms of multiple phases where a project starts in the planning phase 

and then subsequently moves into analysis, design, implementation, and maintenance phases. 

While the original developer of the traditional SDLC, W.W. Royce, highlighted the need for 

continuous feedback between these phases, organizations largely ignored the feedback part in the 

ISD process (Hoffer 1999). As a consequence, communication between individuals, especially 

those in different phases, is limited, resulting in unequal dissemination of information. Another 

criticism of traditional methodologies is the near absence of customer feedback in the ISD 

process (Hoffer 1999), resulting in a disconnect between what is being developed and what the 

customer want.  

Social agile practices increase everyday communication between the customer, 

management, and technical staff. Social practices, such as daily standups and retrospective 

meetings, foster face-to-face and frequent employee interactions thereby allowing individuals to 

update each other about the overall progress of the systems development. Additionally, 

availability of the product owner bridges the disconnect between customers’ needs and 

developers’ understanding of the customers’ expectations. Given that social agile practices foster 

organizational communication, and given that creativity is reduced when too many restrictions 

are placed on organizational communication [72], we suggest: 

 

 H6: Social agile practices usage will have a positive impact on the creativity of an IT 

department. 
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Methodology 

To test our hypotheses, we created a survey in Qualtrics. The survey was sent via email to 

950 participants in the United States, who were randomly selected from an online LinkedIn 

community of over 12,000 senior-level agile practitioners. The analysis was conducted at the IT 

department-level. In total, 225 responses (23.6 percent response rate) were received (see Table 4 

for sample characteristics). Respondents represented a variety of industries (e.g., computers, 

financial services, internet, communications and utilities) and their job titles included technology 

manager, project manager, program manager, product manager, business analyst, and agile 

consultant. 

Table 4. Sample Characteristics (N = 225) 

 

Industries 

 Computers 31.6% 

Finance, Insurance, & Real Estate 21.8% 

Services 8.9% 

Internet 6.2% 

Communications, Utilities 4.0% 

Others 27.6% 

Total IS Experience 

 Less than 5 years 7.6% 

5 to 10 years 20.4% 

More than 10 years 72.0% 

Total Agile Experience 

 Less than 5 years 43.1% 

5 to 10 years 40.0% 

More than 10 years 16.9% 

# of Employees in the Organization 

 Fewer than 1,000 44.4% 

1,000 to 10,000 26.3% 

More than 10,000 29.3% 

# of Employees in the IT department 

 Fewer than 100 61.3% 

100 to 500 21.8% 

More than 500 16.9% 
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Construct measures 

Measures were drawn from the literature on ASD and organizational behavior. Six 

technical agile practices (pair-programming, unit testing, continuous integration, refactoring, and 

collective ownership) and three social agile practices (daily stand-up, access to customer/product 

owner, and retrospectives) were measured using the scales proposed by Maruping et al. (2009) 

and So and Scholl (2009) respectively. The scores for each technical and social practice was 

computed by averaging their indicator items to form the higher-level constructs of technical agile 

practices and social agile practices. Before computing these scores, a reliability analysis was 

conducted and the items with poor reliabilities were dropped such that scales for each agile 

practice had a Cronbach α of at least 0.70 (see APPENDIX A for list of items and reliabilities). 

Creativity was measured using five items proposed by Lee and Choi (2003), while the four 

cultural constructs were measured using the scales suggested by Iivari and Huisman (2007) (see 

APPENDIX B for the measures of creativity and culture). Since we had more than one response 

from some organizations, we used the organization name as a control variable.  

We checked for nonresponse bias using Armstrong and Overton’s (1977) method of 

comparing the responses of early respondents with late respondents on all variables. The analysis 

revealed no statistically significant differences: group culture (t = 0.855, ns), developmental 

culture (t = 0.604, ns), rational culture (t = 0.982, ns), hierarchical culture (t = 0.416, ns), 

refactoring (t = 0.234, ns), continuous integration (t = 0.55, ns), unit testing (t = 0.055, ns), pair-

programming (t = 1.489, ns), retrospectives (t = 0.183, ns), stand up/daily scrum (t = 0.186, ns), 

access to the product owner (t = 0.884, ns), and creativity (t = 0.37, ns). In addition to this, 

Harman’s single-factor test was performed to check whether common method variance was a 

major concern (Podsakoff and Organ 1986). All seven variables were entered into an exploratory 
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factor analysis using principal components analysis. The number of factors was then determined 

by examining the unrotated factor solution. A single factor should account for the majority of 

covariance in the latent variables in case of a significant common method variance (Podsakoff 

and Organ 1986). The analysis revealed seven factors and no general factor was apparent. 

 

Data analysis 

We used SmartPLS (version 2.0.M3) to assess the measurement model and test the 

proposed hypotheses. Several measurement models were evaluated and items that had outer 

loadings below 0.5 were dropped from the analysis (Hair Jr et al. 2013). While hierarchical 

culture was reduced to two items, all items were retained for group culture, rational culture, 

developmental culture, and creativity (see Table 5 for internal consistency reliabilities (ICR) and 

average variance extracted (AVE)). While averaged scores of daily stand-ups, retrospectives, and 

access to the product owner had outer loadings above 0.5 on the social agile practices construct, 

the technical agile practices construct was reduced to 5-items (pair-programming, continuous 

integration, coding standards, refactoring, and unit testing) because collective ownership was 

dropped due to its low outer loading. 

We then assessed the reliabilities, discriminant validity, and convergent validity. 

According to Hair and colleagues’ (2013), internal consistency reliabilities (ICR) between 0.70 

and 0.90 are considered satisfactory. Further, an average variance extracted (AVE) value of more 

than 0.50 establishes convergent validity of a latent construct (Hair Jr et al. 2013). Discriminant 

validity was assessed using the Fornell-Larcker criterion, which suggests that the square root of 

the AVEs of each latent variable should be greater than its correlation with any other construct 

(Fornell and Larcker 1981). The values reported in Table 5 demonstrate sufficient ICRs (all 
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values > 0.70), convergent validity (all AVEs > 0.50), and discriminant validity (i.e., the 

diagonal elements are greater than the construct’s correlations with any other constructs). 

Discriminant validity was further assessed by examining items’ cross loadings, which were all 

found to be smaller than their factor loadings (Hair Jr et al. 2013). 

 

Table 5. Reliabilities and Correlations 

Construct ICR AVE Correlation of Constructs* 

Development

al Culture 
0.84 0.639 0.800             

Group  

Culture 
0.829 0.621 0.654 0.788           

Hierarchical 

Culture 
0.860 0.757 -0.190 -0.143 0.873         

Rational  

Culture 
0.794 0.531 0.468 0.360 0.236 0.702       

Social  

Practices 
0.835 0.628 0.480 0.432 

-

0.157 
0.358 0.793     

Technical 

Practices 
0.839 0.515 0.468 0.368 

-

0.230 
0.310 0.585 0.718   

Creativity 0.937 0.748 0.640 0.398 
-

0.151 
0.323 0.493 0.490 0.865 

*The square root of AVEs appear on the diagonals in bold in the correlation of constructs matrix 

 

We then performed the significance testing of the proposed hypotheses using a 

bootstrapping procedure with 300 resamples. One-tailed t tests were used because of the 

directional hypotheses. Organization name, the control variable, accounted for less than 0.011 

percent (β = -0.043, t = 0.66, ns), implying no statistically significant impact on creativity. The 

model (see Figure 2) accounted for 30.6 percent of the variance in the IT department’s creativity, 

and 27.2 percent and 28.9 percent of the variance in technical agile and social agile practices 

respectively.  



www.manaraa.com

66 

 

 

 Notes: N= 225; ns (not significant); * p < 0.05; ** p < 0.01; *** p < 0.001. 

 

Figure 2. Results 

 

The relationship between developmental culture and technical agile practices was 

significant (H1a: β = 0.28, t = 4.12, p< 0.001). Similarly, rational culture had a positive influence 

on technical agile practices (H1b: β = 0.20, t = 2.69, p< 0.01). Hierarchical culture was 

negatively related to technical agile practices (H2b: β = -0.21, t = 3.44, p<0.01). H2a, which 

proposed a negative relationship between group culture and technical practices was not 

supported (β = 0.08, ns). H3a and H3b, which proposed a positive relationship between group 

culture and social agile practices (β = 0.18, t = 1.95, p< 0.05) and between developmental culture 

and social agile practices (β = 0.23, t = 2.62, p< 0.01) respectively, were both supported. As 

proposed, hierarchical culture had a negative impact on social agile practices thereby supporting 

H4b (β = -0.14, t = 2.10, p< 0.05). This study also proposed that rational culture would be 

negatively related to social agile practices (H4a); however, the results indicated the opposite such 

that rational culture was found to have a positive influence on social agile practices (β = 0.22, t = 



www.manaraa.com

67 

 

 

3.10, p< 0.01). Finally, the paths between technical practices and creativity (H5: β = 0.31, t = 

5.19, p< 0.001), and social practices and creativity (H6: β = 0.31, t = 4.55, p< 0.001) were both 

significant. 

 

Table 6. Summary of Results 

Hypotheses  Results Significance 

H1a 
Developmental culture will have a positive 

impact on the use of technical agile practices. 
Supported 

β = 0.28*** 

(t = 4.12) 

H1b 
Rational culture will have a positive impact 

on the use of technical agile practices. 
Supported 

β = 0.20** 

(t = 2.69) 

H2a 
Group culture will have a negative impact on 

the use of technical agile practices. 

Not 

Supported 

β = 0.08 

(ns) 

H2b 
Hierarchical culture will have a negative 

impact on the use of technical agile 

practices. 

Supported 
β = -0.21** 

(t = 3.44) 

H3a 

 

Group culture will have a positive 

impact on the use of social agile 

practices. 

Supported 
β = 0.18*

 

(t = 1.95) 

H3b 
Developmental culture will have a 

positive impact on the use of social agile 

practices. 

Supported 
β = 0.23** 

(t = 2.62) 

H4a 
Rational culture will have a negative 

impact on the use of social agile 

practices. 

Not 

Supported 

β = 0.22** 

(t = 3.10) 

H4b 
Hierarchical culture will have a negative 

impact on the use of social agile 

practices. 

Supported 
β = -0.14*

 

(t = 2.10) 

H5 
Technical agile practices usage will have 

a positive impact on the creativity of an 

IT department. 

Supported 
β = 0.31*** 

(t = 5.19) 

H6 
Social agile practices usage will have a 

positive impact on the creativity of an IT 

department. 

Supported 
β = 0.31*** 

(t = 4.55) 

Notes:  ns (not significant); * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Discussion 

Past ASD research has erroneously concentrated on proposing the ideal agile culture. 

This stream of research has also ignored the social dimension of ASD and instead focused on 

technical agile practices. Moreover, since organizations tend to adopt new SDMs across their IT 

departments, this study argued that the creative outcome of using agile practices should be 

measured at the IT department-level. The results yielded interesting insights, indicating that agile 

practices can be successfully followed in a range of organizational cultures. We also found 

partial support that culture might influence social and technical dimensions of ASD differently. 

Additionally, both technical and social agile practices were found to positively affect the 

creativity of the IT department.  

Eight of the ten hypotheses were supported (see Table 6). Developmental culture had a 

positive impact on the use of technical (H1a) and social practices (H3b). As discussed 

previously, developmental culture lies at the intersection of external focus and flexibility. While 

external focus is likely to encourage the use of engineering-based technical practices, flexibility 

in organizational structure stimulates employee interactions and member participation thereby 

supporting the use of social practices in systems development. 

We predicted that hierarchical culture would be negatively related to both technical (H2b) 

and social practices (H4b). Both of these hypotheses were supported. Hierarchical culture tends 

to be internally-focused and highly formalized. This culture is more concerned about the internal 

functioning of the organization and is less concerned about the activities of rival firms. As a 

consequence, hierarchical culture is less likely to promote technical practices, which allow 

organizations to stay ahead of the competition. Moreover, since these organizations tend to have 
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a stable structure such that the leadership style is top-down and communication is controlled, the 

likelihood of using social agile practices in these organizations is low. 

We argued for a positive relationship between rational culture and technical practices 

(H1b), and for a negative relationship between rational culture and social practices (H4a). 

Rational culture reflects authoritative and externally-focused values. Consistent with externally-

focused developmental culture, rational culture had a positive influence on technical practices. 

Given that rational culture, like hierarchical culture, promotes stable and formal organizational 

structure, we proposed a negative relationship between rational culture and social practices. 

Surprisingly, the results indicated a positive relationship between the two. This could be due to 

the interaction between authoritative and externally-focused values of rational culture, which 

makes this cultural form less authoritative as opposed to hierarchical culture. Further, though 

rational culture endorses stable organizational structure, Iivari and Huisman (2007) argue that, 

due to their external focus, rational organizations are quick to implement new SDMs if their 

benefits are apparent. Given that social agile practices, unlike traditional SDMs, allow everyday 

communication between business and technical staff, the benefits of using these practices 

become apparent relatively quickly. Thus, it is possible that, despite controlled organizational 

structure, rational organizations may still encourage social agile practices.  

We proposed that group culture, which lies at the intersection of internal focus and 

flexibility, would have a negative influence on technical practices (H2a), but would positively 

relate to social practices (H3a). Similar to internally-focused hierarchical culture, we expected a 

negative relationship between group culture and technical practices; however, this relationship 

was not supported. We had argued that internally-focused organizations are less likely to follow 

technical agile practices since these organizations are more concerned about the internal 



www.manaraa.com

70 

 

 

functioning of the organization rather than gaining competitive advantage over rival firms. We 

further argued that technical agile practices are significantly different than the values suggested 

by traditional SDMs and thus require considerable learning effort of employees, who may find it 

difficult to adapt to non-traditional SDMs. Given that group culture, though internally-focused, 

tends to have flexible organizational structure, we believe that the interaction between internal 

focus and flexible values of group culture might have resulted in the lack of support for H2a. We 

did, however, find support for H3a, implying that flexible group culture is likely to endorse 

social practices. 

Our final set of hypotheses predicted that technical practices (H5) and social practices 

(H6) would increase an IT department’s creativity. Results provided support for both. Technical 

agile practices enable organizations to creatively develop information systems for novel and 

unexplored business problems. Specifically, technical practices, such as advocating the use of 

two developers to write all code, providing immediate feedback in case there are any integration 

issues due to newly developed code, and enforcing the use of agreed-upon coding standards, lead 

to generation of novel and valuable technical artifacts.. Social practices, on the other hand, 

facilitate information sharing and effective communication between business people and 

technical staff. This helps in clarifying doubts pertaining to system requirements, discussing 

progress, resolving impediments, and reevaluating priorities. Simply put, information is not 

controlled and is readily available to everyone involved in the ISD process. Since creativity is 

hampered when information is controlled (Woodman et al. 1993), it stands to reason that the use 

of social practices would have a positive impact on creativity. 
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Implications for research and practice 

The present study yields some interesting insights for practice. Contrary to existing 

research, we found that there is no ideal agile culture and, except for hierarchical culture, ASD 

can be successfully followed in a range of organizational cultures. The only cultural form which 

IT managers interested in implementing ASD should be wary of is hierarchical culture. There 

was partial support to suggest that cultural forms impact social and technical dimensions of ASD 

differently. While group, developmental, and rational forms of culture were found to encourage 

social agile practices in ISD, only developmental and rational culture had a significant positive 

relationship with technical practices. This suggests that IT managers of group culture-oriented 

organizations should invest more in social practices rather than in technical practices. 

The findings of this study also provide valuable contributions to the growing body of 

research on ASD. Compared to prior research that has largely focused on case or ethnographic 

studies, this study adopted a survey method, thereby making the findings more generalizable 

across organizations. The unit of the analysis in this study was the IT department instead of a 

team or a project. We argued that since organizations are more likely to introduce agile practices 

across their IT departments, it was reasonable to assess the impact of using these practices at the 

IT department-level. While several constructs have been used in the ISD literature to measure the 

outcome of using a new SDM, this study employed creativity as the main dependent variable. 

While the importance of creativity in systems development is well-recognized in practice, it is 

surprising that the construct of creativity has received scant attention in the ISD literature 

(Tiwana and McLean 2003). By focusing on creativity as the outcome of using agile practices, 

this study extends our understanding about the scarcely studied concept of creativity in the 

management information systems literature (Tiwana and McLean 2003). 
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Limitations and future research 

While the findings of this study are interesting and informative, the study is not without 

limitations. First, the sample consisted of only US-based firms. Given that there are substantial 

management differences between American and non-American firms (Hofstede 1993), caution 

must be exercised while making generalizations of the findings from this study to non US-based 

firms. Second, although Harman’s single-factor test did not provide any evidence of mono-

method bias, it should be repeated that all data in this study were collected using self-reported 

survey-based measures. Third, this study used a single respondent, a senior-level agile 

practitioner, per organization (or IT department). Multiple respondents from the same IT 

department (or organization) would have provided stronger evidence for the findings. 

We believe that there are a number of avenues for future research. Given that this study 

primarily consisted of US-based organizations, more research is needed to conclude whether the 

findings from this study will hold in non-American organizations. Thus, the present study can be 

extended by including a broader sample of organizations from different countries. Additionally, 

this study did not specifically make any distinction between in-house systems development and 

outsourced systems development processes; therefore, another interesting avenue for future 

research is to explore how different cultural forms affect the use of agile practices during in-

house systems development as opposed to outsourced systems development. 

 

Conclusion 

This study investigated the interplay of organizational culture, when applied to IT 

departments, and the use of agile practices and an IT department’s creativity. The results from 

this study calls for a major shift from the prevalent view in the literature that has argued for the 
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ideal agile culture. Based on the survey of 225 experienced agile practitioners, this study 

indicates that agile practices can be effectively used in a variety of organizational cultures. 

However, it is important that organizations understand the differences between technical and 

social aspects of ASD since not all forms of organizational culture impact the technical and 

social sides of ASD in the same manner. Further, while there are considerable differences 

between engineering-based technical and management-based social agile practices, both of these 

practices enhance creativity of the IT departments. Lastly, our results suggest interesting 

directions for future research on ASD. We also hope that future studies will use more of non-

case methods and will include a broader sample of organizations from multiple nations so that 

the findings can be generalized across organizations in different countries. 
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APPENDIX A 

MEASURES OF TECHNICAL AND SOCIAL AGILE PRACTICES  

 

Continuous Integration (Cronbach α  = 0.77) (Source: Maruping et al. (2009)) 

  Mean S.D. 

CI1 We integrate newly coded units of software with existing code. 6.12 0.96 

CI2 We combine new code with existing code on a continual basis. 6.10 1.06 

 

Refactoring (Cronbach α  = 0.87) (Source: Maruping et al. (2009)) 

REF1 Where necessary, we try to simplify existing code without 

changing its functionality. 

5.66 1.22 

REF2 We periodically identify and eliminate redundancies in the 

software code 

5.43 1.40 

REF3 We periodically simplify existing code 5.11 1.51 

 

Unit Testing (Cronbach α  = 0.85) (Source: Maruping et al. (2009)) 

UT1 We run unit tests on newly coded modules until they run 

flawlessly. 

5.41 1.48 

UT2 We actively engage in unit testing. 5.79 1.33 

UT3* To what extent are unit tests run by the members in this 

department? 

5.58 1.45 

 

Collective Ownership (Cronbach α  = 0.70) (Source: Maruping et al. (2009)) 

CO1 Anyone can change existing code at any time. 4.62 2.03 

CO2 If anyone wants to change a piece of code, they need the 

permission of the individual(s) that coded it. 

2.44 1.52 

CO3 We are comfortable changing any part of the existing code at 

any time. 

4.50 1.69 

 

Coding Standards (Cronbach α  = 0.84) (Source: Maruping et al. (2009)) 

CS1 We have a set of agreed upon coding standards in this team. 5.39 1.37 

CS2 We have a shared understanding of how code is to be written. 5.43 1.29 

 

Pair Programming (Cronbach α  = 0.94) (Source: Maruping et al. (2009)) 

PP1* How often is pair programming used in this department? 3.74 1.79 

PP2 We do our software development using pairs of developers 4.35 1.97 

PP3* To what extent is programming carried out by pairs of 

developers in this department 

3.84 1.79 
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Daily Standup (Cronbach α = 0.73) (Source: So and Scholl (2009)) 

  Mean S.D. 

DS1 Stand up meetings are extremely short (max. 15 minutes). 5.67 1.51 

DS2 Stand up meetings are to the point, focusing only on what has 

been done and needed to be done on that day. 

5.40 1.42 

DS3 All relevant technical issues or organizational impediments 

come up in the stand-up meetings. 

4.92 1.48 

DS4 Stand up meetings provide the quickest way to notify other 

members about problems. 

5.07 1.68 

DS5 When people report problems in the stand-up meetings, other 

members offer to help instantly. 

5.31 1.34 

 

Retrospective Meetings (Cronbach α = 0.91) (Source: So and Scholl (2009)) 

RET1 We actively participate in gathering lessons learned in the 

retrospectives. 

5.56 1.53 

RET2 The retrospectives help us become aware of what we did well 

in the past iteration/s. 

5.73 1.38 

RET3 The retrospectives help us become aware of what we should 

improve in the upcoming iteration/s. 

5.73 1.40 

RET4 In the retrospectives (or shortly afterwards), we systematically 

assign all important points or improvement to responsible 

individuals 

4.75 1.66 

RET5 We follow up intensively on the progress of each improvement 

point elaborated in a retrospective. 

4.61 1.57 

 

Customer Access (Cronbach α = 0.89) (Source: So and Scholl (2009)) 

CA1 The customer is reachable. 5.36 1.63 

CA2 The developers can contact the customer directly or through a 

customer contact person without any bureaucratical hurdles 

4.91 1.86 

CA3 The developers have responses from the customer in a timely 

manner. 

4.93 1.64 

CA4 The feedback from the customer is clear and clarified about the 

requirements or open issues to the developers 

4.90 1.56 

All items were measured using a 7-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 

= neither agree nor disagree, 5 = somewhat agree, 6 = agree, 7 = strongly agree) 

* Items were measured using a 7-point Likert scale (1 = never, 2 = rarely, 3 = occasionally, 4 = sometimes, 5 = 

frequently, 6 = usually, 7 = every time) 

Notes: The scores for each technical and social practice was computed by averaging their corresponding indicator 

items in order to form the higher level construct of technical agile practices. 
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APPENDIX B 

CULTURAL & CREATIVITY MEASURES  

 

Group (Quadrant 1) Culture (ICR = 0.829, AVE = 0.621) (Source: Iivari and Huisman (Iivari 

and Huisman 2007)) 

  Mean S.D. 

G1 The glue that holds the IT department I work in together is 

loyalty and tradition. 

4.74 1.42 

G4 The IT department I work in is a very personal place. 4.65 1.64 

G3 The IT department I work in emphasizes human resources. 4.42 1.52 

 

Developmental (Quadrant II) Culture (ICR = 0.840, AVE = 0.639) (Source: Iivari and 

Huisman (Iivari and Huisman 2007)) 

D1 The IT department I work in is a very dynamic and 

entrepreneurial place 

4.75 1.60 

D2 The glue that holds the IT department I work in together is 

commitment to innovation and development. 

4.97 1.44 

D3 The IT department I work emphasizes acquiring new resources 

and meeting new challenges. 

4.72 1.36 

 

Rational (Quadrant III) Culture (ICR = 0.785, AVE = 0.553) (Source: Iivari and Huisman 

(Iivari and Huisman 2007)) 

R1 The glue that holds the IT department I work in together is the 

emphasis on tasks and goal accomplishment. 

4.97 1.33 

R2 The IT department I work in is a very production-oriented 

place. 

5.22 1.27 

R3 The IT department I work in emphasizes competitive actions, 

outcomes and achievement. 

4.43 1.64 

 

Hierarchical (Quadrant IV) Culture (ICR = 0.863, AVE = 0.761) (Source: Iivari and Huisman 

(Iivari and Huisman 2007)) 

H1 The IT department I work in is a very formal and structured 

place. 

3.50 1.71 

H2 The glue that holds the IT department I work in together is 

formal rules and policies. 

3.27 1.61 
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Creativity (ICR = 0.937, AVE = 0.748) (Source: Lee and Choi (Lee and Choi 2003)) 

C1 Our IT department has produced many novel and useful ideas 

(services/products). 

5.45 1.16 

C2 Our IT department fosters an environment that is conductive to 

our own ability to produce novel and useful ideas 

(services/products). 

5.27 1.30 

C3 Our IT department spends much time for producing novel and 

useful ideas (services/products). 

4.76 1.41 

C4 Our IT department considers producing novel and useful ideas 

(services/products) as important activities. 

5.21 1.33 

C5 Our IT department actively produces novel and useful ideas 

(services/products). 

5.07 1.34 

All items were measured using a 7-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 

= neither agree nor disagree, 5 = somewhat agree, 6 = agree, 7 = strongly agree) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

84 

 

 

CHAPTER 4.  TOWARDS THE DEVELOPMENT OF A BIG DATA CAPABILITY 

 

Abstract 

The era of big data, which refers to unstructured, diverse, and fast moving data, has 

begun where organizations in all industries are increasingly collecting enormous volumes of 

data. While the research into the economic benefits of big data is in a nascent stage, 

organizations around the globe have been heavily investing in big data initiatives. However, we 

know from prior studies that investments alone do not generate competitive advantage; instead 

firms need to create capabilities that rival firms find hard to match (Bharadwaj 2000; Carr 2003).  

Drawing on the resource-based view of the firm and the recent work in big data, this study 

identifies various resources (e.g., technology, data, investments, and managerial and technical 

skills) that are needed by firms to build a big data capability. Further, this study categorizes these 

big data-specific resources into tangible, human, and intangible types. Specifically, this study 

examined the following research question: “What are the resources needed to create a firm-level 

big data capability?” Additionally, this study proposes and validates an instrument to measure a 

big data capability of the firm. 

 

 

 

 

 

 

 



www.manaraa.com

85 

 

 

Introduction 

The information technology (IT) productivity paradox, which refers to the failure to 

establish a positive relationship between IT investments and firm productivity, has been the 

focus of several studies since the early 1990s. Eventually, the paradox was solved and more than 

two decades of research suggested several resources (e.g., managerial and technical skills, IT 

infrastructure, and firm’s intellectual capital) that were required to realize the true value of 

investments in IT. While we have not yet witnessed the “big data productivity paradox,” given 

the speed at which organizations in all industries and of all sizes are jumping on the bandwagon 

of big data (i.e., the new forms of data that need sophisticated technology to find meaningful 

patterns from them), it is likely that we, as information systems researchers, are waiting for it to 

happen. While in the 1980s, IT was touted as a competitive weapon, currently it is big data that 

is heralded as the next big thing for organizations to gain competitive edge. According to a 

recent global survey of 720 firms, 64% of organizations had already invested in or had plans to 

make investments in big data (Gartner 2013). This is surprising, given the research into the 

economic benefits of big data remains in an embryonic state. While the popular press, which is 

primarily written by technology consultants (or vendors), is rife with articles defining the 

characteristics
1
 of big data, there is little knowledge about how organizations build big data 

capabilities.  

We know from prior research that organizations build capabilities by combining and 

deploying their resources (Bharadwaj 2000; Grant 2010). This study considers data one such 

resource, which is necessary, but not sufficient to create a big data capability. In other words, big 

data on its own is unlikely to be a source of competitive advantage, since firms (of comparable 

sizes) will likely be collecting hordes of data from a variety of sources (Carr 2003). Similarly, 
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investments alone will not create superior big data capabilities (Ross et al. 2013). A firm needs a 

unique blend of its financial, physical, human, and organizational resources to create a 

capability, which will be difficult to match by competitors (Amit and Schoemaker 1993; Barney 

1995; Grant 2010). Moreover, firms need to continuously reconfigure their resources according 

to changing market conditions (Teece 2014; Teece et al. 1997). However, to do so, it is 

imperative for firms to be aware of the various resources that are required to build a capability. 

This study examines which resources are needed to build a big data capability, which we 

define as a firm’s ability to assemble, integrate, and deploy its big data-specific resources. 

Drawing upon the resource-based view (RBV) of the firm, past IT capabilities literature, and 

recent work in big data, several resources are suggested. These resources are then categorized 

into tangible, human, and intangible types. Additionally, this study develops and validates an 

instrument to measure a firm’s big data capability. It is hoped that academics interested in 

studying big data will use this instrument as a tool to further the research on big data, and 

practitioners can employ this instrument to assess current and future big data capabilities of their 

organizations and respond accordingly.  

This paper is organized as follows. We begin with a brief review of relevant literature 

pertaining to RBV and big data. We then discuss different resources that create a big data 

capability. Next, we describe our research methods and data analysis for the big data capability 

instrument.  The paper ends with a discussion of findings, followed by implications for practice 

and research. 
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Literature 

The Resource-based view of the firm 

The resource-based view has remained a principal paradigm to conduct research in the 

strategic management field, and the information systems (IS) field is no exception. According to 

RBV, a firm has a collection of tangible and intangible resources, but only the ones that are 

valuable, rare, inimitable, and non-substitutable (or simply VRIN)  are capable of generating 

competitive advantage (Barney 1991). While Barney (1991) and other proponents of RBV do not 

explicitly differentiate between resources and capabilities, Amit and Schoemaker (1993) define 

resources as assets that are owned and controlled by a firm. By comparison, capabilities are 

defined as “a special type of resource” (Makadok 2001, p.385) that enables firms to aggregate 

and deploy their resources (in combination) to achieve a desired end (Amit and Schoemaker 

1993). There are several types of resources that have been suggested in the extant literature. For 

example, according to Barney (1995, p. 50): 

Financial resources include debt, equity, retained earnings, and so forth. Physical resources include the machines, 

manufacturing facilities, and buildings firms use in their operations. Human resources include all the experience, 

knowledge, judgment, risk taking propensity, and wisdom of individuals associated with a firm. Organizational 

resources include the history, relationships, trust, and organizational culture that are attributes of groups of 

individuals associated with a firm, along with a firm's formal reporting structure, explicit management control 

systems, and compensation policies 

 

Grant (2010) further classifies these resources into tangible (e.g., financial and physical 

resources), people-based (e.g., employees’ knowledge and skills), and intangible (e.g., 

organizational culture and organizational learning) resources.  

Citing that RBV does not answer how some firms can quickly respond to changing 

market conditions, Teece et al. (1997) proposed the concept of dynamic capabilities, which refer 

to a firm’s ability to “integrate, build, and reconfigure internal and external competencies to 
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address rapidly changing environments” (p. 516). According to the dynamic capabilities 

framework, the VRIN status of resources may become ordinary over time, and thus it is critical 

for firms to renew their resources in response to the external environment. The main point here is 

that ordinary capabilities (e.g., personnel, facilities, and equipment) can be sold or purchased in 

intermediate markets, while dynamic capabilities are built by a firm based on its heritage, 

culture, values, and learning abilities, which, according to DVF, are intangible assets.  

 

Big data  

The term “big data” was initially coined to reflect the “bigness” or voluminous size of 

data generated as a result of using new forms of technology (e.g., social media, radio-frequency 

identification tags, smart phones, and sensors). This definition was then extended to include 

variety (i.e., structured or unstructured data formats) and velocity (i.e., the speed at which data 

are created) aspects of data. Over the years, others have further dimensionalized big data into 

veracity (i.e., messiness of data) and value (i.e., the previously unknown insights) (Davenport 

2014). Indeed, these several Vs enhance our understanding of big data; however, the real 

potential of big data lies not in its properties, but in its affordance to a firm (Markus 2015). In 

industry, the term “big data” may also refer to the use of analytics (e.g., text analytics, social 

media analytics) to glean intelligence from unstructured data (Davenport 2014; LaValle et al. 

2014). In sum, while there is no consensus on the definition and characteristics of big data, there 

is a complete agreement among scholars and practitioners on the transformational potential of 

big data (George et al. 2014; McAfee and Brynjolfsson 2012). For the purpose of this study, 

hereinafter the term “big data” will be used to describe massive, complex, and real time 
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streaming data that require sophisticated management, analytical, and processing techniques to 

extract insights (Beyer and Laney 2012).  

 

Towards the development of a big data capability 

While the published research on big data is limited, there are some studies that have 

identified challenges associated with the success of big data projects. For instance, early studies 

suggested the size of data and lack of powerful computational technology as significant barriers 

to harness the potential of big data. A survey by New Vantage Group (2012) revealed that 

companies are more worried about the unstructured nature of data rather than the size of data. 

Some recent work indicates that big data initiatives are likely to fail unless organizations adopt a 

culture of data-driven decision making, where the senior-level executives make decisions based 

on data rather than on their instinct (Ross et al. 2013). Lack of managerial support is also cited as 

a critical factor impacting the success of big data initiatives (LaValle et al. 2014). Another 

challenge is to recruit fresh talent and train current employees in big data-specific skills since 

working with big data requires new kind of abilities, which are not commonly taught in 

universities (McAfee and Brynjolfsson 2012).  

The research discussed so far lists several challenges that an organization may need to 

address to reap benefits from big data; however, it does not yield insights into how firms can 

create a big data capability. Relying on the resource-based perspective and additional work on 

RBV by several others (e.g., Amit and Schoemaker 1993; Grant 2010; Teece 2015), we propose 

seven resources, which are further categorized into tangible, human, and intangible resources 

(see Figure 1), that in combination will allow firms to create a big data capability. While tangible 

resources include data, technology, and other basic resources (i.e., time, and money), human 
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resources consist of managerial and technical skills pertaining to big data. Data-driven culture 

and the intensity of organizational learning are suggested as the two critical intangible resources 

needed to build a big data capability. We next discuss each of these resources in detail. 

BIG DATA CAPABILITY 

 

 

 

 

 

 

TANGIBLE HUMAN INTANGIBLE 

 

 Data  

(public, private, 

community, etc.) 

 

 Technology  

       (Hadoop, NoSQL) 

 

 Basic Resources (time, 

money) 

 

 Managerial Skills 

(business acumen, 

relationship with 

others, etc.) 

 

 Technical Skills 

(education, trainings,  

new hires) 

 

 Data-Driven Culture 

(decisions based on 

data rather than on 

intuitions) 

 

 Intensity of 

Organizational 

Learning (ability to 

explore, store, share, 

and apply knowledge) 

 

Figure 1. Classification of Big Data Resources 

 

Tangible resources 

According to RBV, tangible resources are those that can be sold or bought in a market. 

Examples include financial resources (e.g., debt, equity) and physical assets (e.g., equipment and 

facilities) of the firm. Moreover, the firm’s financial statement clearly describes its stock of 

tangible resources (Grant 2010; Teece 2014). Since tangible resources, to some extent, are 

readily available to all firms of comparable size (Barney 1991), these resources are unlikely to 

provide any competitive advantage on their own. Yet, tangible resources are required to create 
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capabilities. This study identifies data, technology, and basic resources (e.g.,  ime, and money) as 

the three big data-specific tangible resources that are likely to be accessible to all firms.  

 

Data 

The availability of sufficient data is critical for creating a big data capability. According 

to a recent McKinsey report, like labor, capital, and land, data are considered as an important 

factor of production by firms in all industries. While organizations in the past have primarily 

focused on enterprise-specific structured data (i.e., data that can be stored in relational databases) 

to make business decisions, today’s organizations tend to capture every bit of information 

regardless of the size of data, structure of data, and speed at which data are created (Manyika et 

al. 2011). For instance, Walmart roughly collects 2.5 petabytes of data from its more than 1 

million shopping transactions every hour (Knox 2013). Facebook adds 350 million new images 

every day to its existing database of more than 240 billion images (Miller 2013). It is not that 

organizations in the past did not have access to data; the recent advances in technology have led 

to the creation of new forms of data, which were unavailable as recently as ten years ago. 

Example of one such data includes data generated from radio-frequency identification (RFID) 

tags, which are heavily used all industries to track and identify objects in real-time. RFID tags 

create enormous amounts of data that are not only fast-moving, but are also highly complex.  

George et al. (2014) identify five sources of (big) data: public data, private data, data 

exhaust, community data, and self-quantification data. Public data refer to government-owned 

data sets pertaining to healthcare, climate change, and consumer spending that are available to 

businesses (or individuals) for no cost. Private data are the firm-owned data that are actively 

collected by the firms. Examples include customer transactions, clickstreams, and data generated 
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from the use of RFIDs. Data-exhaust refers to the data that do not have a direct value attached to 

them. However, when combined with other sources of data, data-exhaust can yield new insights. 

Examples include random internet searches and location data generated from mobile phone 

usage. Data generated by users on online social communities, such as Facebook and Twitter, are 

considered community data. Finally, self-quantification data are personal data generated from 

wearable technologies such as fitness bands and smart watches. More broadly, a firm’s data can 

be categorized into internal data and external data (Davenport 2014). While internal data refer to 

enterprise-specific data, which are created as a result of the firm’s internal operations such as 

inventory updates, accounting transactions, sales, and human resource management, data 

collected from the sources external to an organization such as the web, e-commerce 

communities, mobile phones, and sensors can be termed as external data.  

 

Technology 

New forms of data call for novel technologies that are capable of handling the challenges 

posed by gigantic, diverse, and fast moving data. Relational database management systems 

(RDBMS) have remained a popular choice for organizations to store structured data such as 

employees’ records, customer orders, inventory management data, and financial transactions. 

Further, to gain insights from these disparate sources of organizational data, organizations have 

relied on extraction, transformation, and load (ETL) methods to design data warehouses (or data 

marts). Data warehouse is a collection of enterprise-specific data, which are extracted from 

various organizational functions and are then made to conform to a standard structure. Key 

performance indicators (KPI) are then extracted from data using online analytical processing, 

database queries, and other reporting services. This approach is useful and efficient as long as the 
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data that firms are dealing with are structured or in a format on which a structure can be easily 

imposed.  

According to some estimates, as much as eighty percent of an organization’s data exist in 

an unstructured format. This has forced organizations to move beyond traditional RDBMS 

methods of storing and analyzing data. Consequently, new technologies such as Hadoop, a Java 

based software framework, have emerged that allow distributed storage (via Hadoop Distributed 

File System or HDFS) and parallel processing (via MapReduce computational model) of massive 

unstructured datasets. HDFS is the lower level layer for distributed databases, commonly known 

as Not Only SQL (or NoSQL) databases that can efficiently store and retrieve non-relational 

unstructured data. Some examples of NoSQL databases include Cassandra, HBase, and 

MongoDB. Apple’s recent acquisition of FoundationDB, a company that produces NoSQL 

databases, further emphasizes how critical these new forms of technology have become for 

organizations interested in gaining an edge over their competitors. Besides Hadoop and NoSQL 

database technologies, organizations further need several other technologies to store, process, 

analyze, and visualize big data. 

In the past, proprietary technology has been considered a source of competitive 

advantage.  A firm that can keep its proprietary technology secret is likely to have an edge over 

its competition (Carr 2003; Mata et al. 1995). However, prior studies suggest that in most cases it 

is difficult for firms to keep their proprietary technology hidden due to reasons such as labor 

force mobility and reverse-engineering (Mata et al. 1995). Moreover, the emergence of social 

media-based communities, such as LinkedIn groups and Meetups, enables individuals from 

different and sometimes competing organizations to engage in informal interactions as never 
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before. As a result, it is difficult for organizations to keep their (big data) technology completely 

secret from their rivals. 

 

Basic resources 

Besides data and technology, firms need to make adequate investments in their big data-

related initiatives. Moreover, given the newness of big data and its related technology and tasks, 

most organizations have yet to explore a standard procedure to implement these initiatives. 

Therefore, it is likely that a firm’s big data initiatives may not start yielding desired results 

immediately. It is important that firms are persistent and devote enough time to their big data 

initiatives to achieve their analytical objectives. Based on this and consistent with prior IS 

research (Mata et al. 1995; Wixom and Watson 2001), this study suggests investments and time 

as two basic tangible resources required by a firm to create a big data capability. 

 

Human resources 

A firm’s human resources consists of its employees’ experience, knowledge, business 

acumen, problem solving abilities, leadership qualities, relationships with others (Barney 1991; 

Ross et al. 1996). Prior IT capabilities research has suggested technical and managerial skills as 

the critical dimensions of human resources with respect to information technology (Bharadwaj 

2000; Chae et al. 2014; Mata et al. 1995). Along the same lines, this study proposes big data-

specific technical and managerial skills as two important aspects of a firm’s human resources 

pertaining to big data.  

 

Technical skills 
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Technical “big data” skills refer to the know-how required to use new forms of 

technology to extract intelligence from big data. Some of these skills include competencies in 

machine learning, data extraction, data cleaning, statistical analysis, and understanding of 

programming paradigms like MapReduce. While some universities have started to offer courses 

in these skills, there is still a significant shortage of individuals with big data-specific technical 

skills (Chen et al. 2012). This is further vindicated by a recent McKinsey’s report that claims the 

United States alone will need 140,000 to 190,000 individuals with big data skills by 2018 

(Manyika et al. 2011). Technical IT skills such as programming, database skills, and system 

analysis and design in general are not considered rare since these skills to a degree can be 

explicated (or codified) in procedures, documents, and manuals (Mata et al. 1995). We believe 

that same will apply to technical big data skills; however, given the newness of big data 

technology and the skills associated with it, organizations with big data-skilled employees are 

likely to have some advantage over their rivals. However, this advantage may not last long since, 

like technical IT skills, big data-specific technical skills may eventually get dispersed among 

individuals working in same (or different) organizations thereby making this resource ordinary 

across firms (Nonaka et al. 2000).  

 

Managerial skills 

While firms can develop technical skills by hiring new talent and/or by training their 

current employees, managerial skills are highly firm-specific and are developed over time by 

individuals working in the same organization (Mata et al. 1995). These skills are developed as a 

result of strong interpersonal bond between organizational members working in same (or 

different) departments (Bharadwaj 2000). These skills are deep-rooted in an organization setting 
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and can be described as taken-for-granted norms through which managers perform their 

everyday work and make decisions (Bharadwaj 2000; Mata et al. 1995). Stated simply, 

managerial skills are tacit and thus are heterogeneously dispersed across firms (Mata et al. 1995).  

Within the context of a firm’s big data function, the intelligence gleaned from data will 

be of little use to an organization if its managers fail to foresee the potential of newly extracted 

insights. Thus, it is imperative for mangers to have a sharp understanding of how and where to 

apply the insights extracted by their technical teams (Athey 2013). To do so, big data managers 

should have the ability to understand the current and predict the future needs of other business 

units, customers, and other partners (Mata et al. 1995). Moreover, mutual trust and a good 

working relationship between big data managers and other functional managers will likely lead 

to the development of superior human big data skills, which will be difficult to match by other 

firms. 

 

Intangible resources 

Of the three principal types of organizational resources classified by Grant (2010) and 

other strategic management scholars, intangible resources are considered central to a firm’s 

performance, especially in dynamic markets (Teece 2015). Yet, unlike tangible resources, 

intangible resources are not documented on firms’ financial statements (Grant 2010). This is 

because intangibles resources do not have clear and visible boundaries, and their value is highly 

context-dependent (Barney 1995; Teece 2014). While most intangible resources are not easily 

tradable in a market, there are, however, some exceptions such as trademarks, copyrights, and 

other intellectual capital (e.g., patents), which can be sold or bought legally by organizations 

(Grant 2010). In general, most intangible resources meet the VRIN status of the resource-based 
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view thereby making them highly heterogeneous across firms. (Teece 2014). This study 

describes two such intangible resources that are likely to cause major heterogeneity across firms 

looking to reap benefits from big data. These resources are data-driven decision making culture 

and intensity of organizational learning. 

 

Data-driven culture 

Organizational culture is a highly complex notion to understand and describe. Over the 

years, management scholars have suggested several definitions of organizational culture, yet 

there is no consensus on a single definition (House et al. 2002). While some suggest that 

organizational culture encompasses nearly all areas of an organization, others call it a glue that 

keeps an organization together (Dowling 1993; Iivari and Huisman 2007). Prior studies in 

management strategy have identified organizational culture as a source of sustained firm 

performance (Barney 1986; Barney 1995; Teece 2015). On the same lines, recent work in big 

data suggests that organizational culture is critical for the success of the firm’s big data 

initiatives. For instance, Lavalle et al. (2014) indicate that the reasons why big data projects are 

often unproductive relate to organizational culture rather than to the characteristics of data and 

lack of technology. Ross et al. (2013) opine that culture has the ability to inhibit (or enhance) an 

organization’s ability to benefit from big data.  

This emerging stream of research on big data further asserts that while organizations in 

all industries are collecting hordes of data, only a small percentage of organizations have actually 

benefitted from their big data investments (Ross et al. 2013). This is because most organizations 

rely on the past experience and/or intuition of their top-executives to make important decisions, 

which is commonly referred to as the highest paid person’s opinion (HIPPO) (McAfee and 
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Brynjolfsson 2012). To realize the full potential of data owned by firms, it is critical that firms 

develop a data-driven culture, which this study, following Ross et al. (2013) and McAfee and 

Brynjolffson (2012), defines as the extent to which organizational members (including top-level 

executives, middle managers, and lower-level employees) make decisions based on the insights 

extracted from data. A firm in which decisions are influenced by the title (or designation) of 

some individuals is unlikely to gain any return on its big data investments. Consequently, the 

efforts to collect massive amount of data, acquire technology, and build technical and managerial 

skills will be in vain. Moreover, given employees at all levels in an organization are required to 

make some decisions, it is pertinent to diffuse the culture of data-driven decision making to all 

levels such that organizational members, regardless of their titles, have the ability to make good 

decisions that are grounded on some tangible evidence as suggested from data (Ross et al. 2013).  

 

Intensity of organizational learning 

The resource-based view is often criticized for failing to address why some firms perform 

better than their rivals, especially in rapidly changing market conditions (Eisenhardt and Martin 

2000). According to Teece et al. (1997), firms that have the ability to reconfigure their resources 

according to the changes in their external environment will likely have a sustained competitive 

advantage. Grant (1996) asserts that this ability of a firm will likely be impacted by its intensity 

of organizational learning, which is a process through which firms’ explore, store, share, and 

apply knowledge (Bhatt and Grover 2005; Cohen and Levinthal 1990). This makes sense 

because organizational knowledge never wears out (Nonaka and Teece 2001). Grant (1996) 

further proposed the knowledge-based view of a firm that views firms as institutions in which 
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specialized knowledge of individuals is integrated to form organizational-level knowledge that in 

turn leads to sustained business performance.  

Though knowledge does not wear out, it may become outdated due to the emergence of 

new technologies (or new inventions) (Nonaka and Teece 2001). Therefore, firms need to have 

concerted efforts to exploit their existing knowledge and explore new knowledge to cope with 

the uncertain market conditions (Bhatt and Grover 2005; Teece 2015). Based on this, it is safe to 

suggest that firms with high intensity of organizational learning are likely to have stocks of 

organizational knowledge that can be used towards creating a big data capability. These stocks of 

(new and old) knowledge can be combined with the insights extracted from big data to make 

informed decisions. We know that any analysis of data does not tell the whole story; it is always 

the theory that explains. In the same manner, firms with high intensity of organizational learning 

will likely have an advantage of applying their stocks of knowledge to further validate the initial 

insights gleaned from big data. 

 

Big data capability 

Drawing on RBV, we have proposed that firms need a combination of certain tangible, 

human, and intangible resources to build a big data capability. Prior studies, citing that tangible 

resources can be acquired from a market, have emphasized the importance of human and 

intangible resources in creating organizational capabilities. While we agree that big data-specific 

tangible resources on their own cannot create a big data capability, we believe this is true for 

human and intangible big data resources as well. To create a big data capability, a firm needs not 

just one or two of these resources, but it is the unique combination of all three that generates a 

firm-specific big data capability. For instance, a firm that has a corpus of data and powerful 
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computational technology, but lacks managerial and technical big data skills, is unlikely to 

benefit from its data and big data technology. Similarly, the mere presence of tangible resources 

(e.g. data and technology) and big data-specific human skills will not be rewarding if an 

organization lacks learning intensity and adopts a culture where decisions are made based on 

people’s opinions. 

Having defined the notion of big data capability and the resources that in combination 

build this capability, we next develop an instrument to measure a firm’s big data capability. 

 

Instrument Development 

Conceptualization of constructs 

As discussed previously, this study defines big data capability as a firm’s ability to 

assemble, integrate, and deploy its big data-based resources. Specifically, the big data capability 

construct is conceptualized as a multi-dimensional third-order aggregate (or formative construct) 

of big data-specific tangible, human, and intangible resources constructs, which in turn are 

conceptualized as second-order formative constructs comprising of first-order constructs (see 

Table 1). Measures of all the first-order constructs, except data-driven culture, were adapted 

from the existing scales proposed in the literature; however, given the new context of the current 

study, the items were modified accordingly (see Table 2). For the data-driven culture construct, 

the recent work in big data was examined and five items were generated, as shown in Table 2. 

All items were further examined by the authors and a person in industry with big data 

knowledge. 

We know that constructs are not inherently formative or reflective; it depends on how 

they are conceptualized within research. Since this study employs a mix of reflective and 
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formative constructs, we followed the guidelines of Jarvis et al. (2003) to evaluate if the 

constructs proposed in this study as formative were in fact formative. To do so, we assessed the 

direction of causality from the constructs to their measures,  interchangeability of the items, and 

covariation among the indicators of the same construct (Petter et al. 2007). For all formative 

constructs proposed in this study, the indicators collectively define their constructs such that 

changes in indicators are likely to cause a change in their corresponding constructs. Second, the 

items of the formative constructs in our study are not interchangeable. For example, the big data 

capability construct is suggested as an aggregate of intangible, tangible, and human resources 

constructs. These three sub-dimensions capture a different aspect of the big data capability 

construct and clearly are not interchangeable. We further do not necessarily expect intangible, 

tangible, and human resources dimensions to covary with each other. Like the big data capability 

construct, all other formatively-proposed constructs satisfied the criteria suggested by Jarvis et 

al. (2003). 

 

Table 1. Latent Constructs and Sub Dimensions 

 

Third-

order 
Type 

Second-order  

(sub-

dimensions) 

Type 
First-order 

(sub-dimensions) 
Type 

Big Data 

Capability 
Formative 

Tangible 

Resources 
Formative 

Data Formative 

Technology Formative 

Basic Resources Formative 

Human 

Resources 
Formative 

Managerial Skills Reflective 

Technical Skills Reflective 

Firm-specific skills Reflective 

Intangible 

Resources 
Formative 

Data-driven culture Reflective 

Intensity of 

Organizational 

Learning 

Reflective 

Relationship Asset Reflective 
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Table 2. First-Order Constructs and their Items 

 

Construct Item Source 

Data 

We have access to very large, unstructured, or fast-moving data for 

analysis 

(Davenport 

2014) 

We integrate data from multiple internal sources into a data warehouse or 

mart for easy access 

We integrate external data with internal to facilitate high-value analysis of 

our business environment 

Technology 

We have explored or adopted parallel computing approaches (e.g., 

Hadoop) to big data processing 

(Davenport 

2014) 

We have explored or adopted different  data visualization tools 

We have explored or adopted cloud-based services for processing data and 

doing analytics 

We have explored or adopted open-source software for big data and 

analytics 

We have explored or adopted new forms of databases, such as Not Only 

SQL (NoSQL), for storing data. 

Basic 

Resources 

Our big data and analytics projects are adequately funded (Wixom and 

Watson 

2001) 
Our big data and analytics projects are given enough time to achieve their 

analytical objectives 

Technical 

Skills 

We provide big data and analytics training to our own employees 

(Carmeli 

and Tishler 

2004; Mata 

et al. 1995) 

We hire new employees that already have the big data and analytics skills 

Our big data and analytics staff has the right skills to accomplish their jobs 

successfully 

Our big data and analytics staff has suitable education to fulfill their jobs 

Our big data and analytics staff holds suitable work experience to 

accomplish their jobs successfully 

Our big data and analytics staff is well-trained 

Managerial 

Skills 

Our big data managers understand and appreciate the business needs of 

other functional managers, suppliers, and customers. 

(Davenport 

2014; Mata 

et al. 1995) 

Our big data managers are able to work with functional managers, 

suppliers, and customers to determine opportunities that big data and 

analytics might bring to our business 

Our big data managers are able to coordinate big data and analytics 

activities in ways that support other functional managers, suppliers, and 

customers 

Our big data managers are able to anticipate the future business needs of 

functional managers, suppliers, and customers 

Our big data managers have a good sense of where to apply big data and 

analytics 

Our big data managers are able to understand and evaluate the output from 

big data and analytics 
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Data-Driven 

Culture 

We consider data a tangible asset 
(Laney 

2001; 

McAfee and 

Brynjolfsson 

2012; Ross 

et al. 2013) 

We base our decisions on data rather than on instinct 

We are willing to override our own intuition when data contradict our 

viewpoints 

We continuously assess and improve the business rules in response to 

insights extracted from data 

We continuously coach our employees to make decisions based on data 

Intensity of 

Organizational 

Learning 

We are able to search for new and relevant knowledge 

(Bhatt and 

Grover 

2005) 

We are able to acquire new and relevant knowledge 

We are able to assimilate relevant knowledge 

We are able to apply relevant knowledge 

We have concerted efforts for the exploitation of existing competencies 

and exploration of new knowledge. 

 

Hierarchical model specification 

The model was then formally specified, representing the relationships between the 

indicators, sub-dimensions, and higher-order constructs (see Figure 2). Following Wetzels et al. 

(2009), we first constructed the first-order latent variables and connected them to their 

corresponding indicators. Data, technology, and basic resources constructs were modelled as 

mode B “formative,” while the remaining first-order constructs were connected to their indicator 

items as mode A “reflective.” The second-order latent variables were then constructed by 

repeating the indicators of their underlying first-order latent variables using mode B “formative” 

method. Thus, the tangible resources construct was made up of the indicators of basic resources, 

data, and technology, while the human resources construct was connected to the indicators of 

managerial skills and technical skills constructs. The intangible construct was linked to the 

indicators of data-driven culture and the intensity of organizational learning constructs. Finally, 

the third-order latent variable big data capability was constructed by repeating the indicators of 

its second-order constructs. 
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Figure 2. Hierarchical Model Specification Using Repeated Indicators Approach 

 

Data collection 

Having formally specified the measurement model, a survey was then created in 

Qualtrics. The survey was sent to 1,000 senior level managers involved in big data initiatives. 

The respondents were selected from the Big Data and Analytics group on LinkedIn. In total 232 
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responses were received. Respondents represented a variety of industries (e.g., computers, 

financial services, internet, communications and utilities), and their job titles included chief 

information officer, chief technology officer, vice president of technology, director of 

information technology, managers of analytics, chief data scientist, and senior data scientist. 

Given we had data collected on 34 indicators, we first conducted an exploratory factor analysis 

(EFA) using principal component analysis (PCA) and varimax rotation. Seven factors emerged 

(eigenvalues >1). All items loaded on their related factor as expected except for TS1, which had 

significant loadings (> 0.5) across multiple factors. Consequently, TS1 was dropped from further 

analysis (Hair et al. 2006). The hierarchical model was then estimated using the PLS path 

weighting scheme, which is the recommended method for estimating hierarchical latent 

variables, especially when the measurement model contains formative constructs (Becker et al. 

2012; Rigdon et al. 2014).  

 

Model assessment 

The assessment criteria for formative and reflective constructs are different. We first 

assessed the validity of the indicators at the construct level. For reflective constructs, all of the 

items had outer loadings above 0.7 and the average variance extracted (AVE) of all measures 

exceeded 0.50 (Hair Jr et al. 2013). While all of the indicators’ weights of data and basic 

resources were statistically significant, only three of the five indicators’ weights of the 

technology construct were found significant. Cenfetelli and Bassellier (2009) suggest that a 

formative construct with many indicators is likely to have few indicators with non-significant 

weights. They further suggest that the non-significant indicator of a formative construct can be 

kept in a model as long as the researchers can justify the contribution of it. Given that the 
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technology construct is proposed as an aggregate of five items where each item captures a 

different big data-related technology, we believed it was appropriate to keep the non-significant 

indicators in the model as each item made an important and distinct contribution to the overall 

technology construct.  

Following MacKenzie et al. (2011), we then evaluated the validity of the items of the 

formative constructs using Edwards’ (2001) adequacy coefficient (R
2

a) by summing the squared 

correlations between the formative construct and its indicators and then dividing the sum by the 

number of indicators. All R
2

a values were above 0.50 (see Table 3), suggesting that the majority 

of the variance in the indicators is shared with the formative construct, and thus the indicators of 

the formative construct are valid (MacKenzie et al. 2011). Like the first-order formative 

constructs, we first evaluated the weights of the formative indicators on their respective higher-

order constructs (three second-order and one third-order constructs). All weights were highly 

significant. The Edwards’ adequacy coefficients (R
2

a) for the higher-order constructs were then 

calculated. All R
2

a values were greater than the recommended values of 0.50 (MacKenzie et al. 

2011). 

Table 3. Higher-order Construct Validation 

 

Construct Measures Weight Significance VIF R
2

a * 

Data 

D1 0.53 p < 0.001 1.376 

0.78 D2 0.26 p < 0.05 1.466 

D3 0.48 p < 0.001 1.281 

Technology 

T1 0.18 p < 0.05 1.795 

0.70 

T2 0.70 p < 0.001 1.529 

T3 0.02 ns 1.541 

T4 0.12 ns 1.61 

T5 0.20 p < 0.05 1.887 

Basic 

Resources 

BR1 0.54 p < 0.001 2.249 
0.88 

BR2 0.28 p < 0.01 1.977 
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Tangibles 

Data 0.34 p < 0.001 1.72 

0.84 
Technology 0.37 p < 0.001 1.82 

Basic  

Resources 
0.47 p < 0.001 1.65 

Human 

Managerial 

 Skills 
0.40 p < 0.001 1.79 

0.91 
Technical  

Skills 
0.69 p < 0.001 1.79 

Intangibles 

Data-Driven 

Culture 
0.49 p < 0.001 1.50 

0.88 
Organization 

Learning 
0.63 p < 0.001 1.50 

BDA 

Tangibles 0.42 p < 0.001 2.34 

0.91 Human 0.31 p < 0.001 2.84 

Intangibles 0.37 p < 0.001 2.88 

* Edwards (2001) adequacy coefficient 

 
 

 

We then examined the extent to which the indicators of the formative constructs were 

multicollinear with each other. While mulitcollinearity is desired among the indicators of a 

reflective construct, it is problematic for formative constructs. Variance inflation factor (VIF) 

values below 10 in general demonstrate low multicollinearity (MacKenzie et al. 2011); however, 

Petter et al. (2007) suggest a more restrictive cutoff of 3.3 for formative constructs. VIF values 

for all the measures of the first-order, second-order, and third-order formative constructs in this 

study were less than 3.3 (see Table 3), indicating that multicollinearity was not a major concern 

(Cenfetelli and Bassellier 2009; Petter et al. 2007). 

 

Reliability and discriminant validity 

The concept of internal consistency reliability (ICR) does not apply to formative 

constructs; however, for reflective constructs, the reliability was assessed using ICR and 

Cronbach’s α, both of which were above 0.8 for all constructs (see Table 4). Discriminant 
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validity of the reflective constructs was established using Fornell and Larcker’s (1981) criteria. 

The square root of the AVEs of each latent variable was greater than its correlation with any 

other constructs. Examination of cross-loadings further yielded support for discriminate validity 

(see Table 5). Recently, Hensler et al. (2014) have criticized the Fornell and Larcker’s (1981) 

criterion of assessing the discriminant validity and have suggested a new criterion called the 

heterotrait-monotrait ratio (HTMT). The HTMT ratio is based on the average of the correlations 

of indicators across constructs measuring different phenomena relative to the average of the 

correlations of indicators within the same construct. According to Henseler and colleagues 

(2014), the HTMT ratio below 0.85 demonstrates sufficient discriminant validity. We ran this 

test on the first order reflective constructs, and the HTMT values for all reflective constructs 

were found below 0.85. Please note that HTMT method can only be used to assess the 

discriminant validity of reflective constructs (Henseler et al. 2014).  

 

Table 4. Inter-correlations of the Latent Variables for First-Order Constructs* 

 

 

Construct ICR Alpha AVE 1 2 3 4 5 6 7 

1 Data NA NA NA NA 
      

2 Basic Resources NA NA NA 0.54 NA 
     

3 Technology NA NA NA 0.60 0.58 NA 
    

4 Managerial Skills 0.92 0.87 0.79 0.45 0.57 0.47 0.89 
   

5 Technical Skills 0.93 0.89 0.76 0.53 0.61 0.55 0.67 0.87 
  

6 Data-Driven Culture 0.90 0.86 0.70 0.54 0.48 0.52 0.64 0.71 0.84 
 

7 Organization Learning 0.94 0.92 0.75 0.53 0.53 0.57 0.56 0.58 0.58 0.87 

* Square root of the AVEs on the diagonal 

 

To the best of our knowledge, there are no established tests in prior literature to assess the 

discriminant validity of formative constructs (Henseler et al. 2014). There are two 

recommendations, however. MacKenzie et al. (2011) suggest that the formative construct should 
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less than perfectly correlate (i.e., less than 0.71) with other constructs. Klein and Rai (2009) 

suggest that, like reflective items, indicators of the formative constructs should load highly on 

their corresponding constructs in comparison to other constructs. All of the first-order formative 

(and reflective) constructs in our study satisfy both of these conditions (see Table 4 and Table 5). 

Table 5. Cross-Loadings 

Items Data Technology 
Basic 

Resources 

Managerial 

Skills 

Technical 

Skills 

Data-

Driven 

Org 

Learning 

D1 0.82 0.51 0.46 0.36 0.42 0.44 0.46 

D2 0.73 0.44 0.37 0.42 0.42 0.42 0.37 

D3 0.79 0.45 0.43 0.46 0.42 0.42 0.40 

T1 0.45 0.66 0.37 0.30 0.38 0.28 0.36 

T2 0.55 0.93 0.53 0.50 0.51 0.50 0.53 

T3 0.31 0.59 0.38 0.35 0.36 0.23 0.30 

T4 0.34 0.65 0.42 0.32 0.39 0.29 0.40 

T5 0.42 0.68 0.41 0.32 0.40 0.29 0.39 

BR1 0.52 0.55 0.93 0.54 0.57 0.44 0.48 

BR2 0.44 0.47 0.82 0.49 0.49 0.40 0.46 

MS1 0.47 0.43 0.48 0.85 0.53 0.61 0.53 

MS2 0.50 0.49 0.48 0.87 0.62 0.61 0.58 

MS3 0.46 0.44 0.52 0.90 0.62 0.62 0.56 

MS4 0.42 0.39 0.50 0.85 0.60 0.50 0.50 

MS5 0.41 0.46 0.51 0.84 0.60 0.59 0.47 

MS6 0.39 0.41 0.51 0.83 0.60 0.61 0.52 

TS2 0.46 0.44 0.50 0.48 0.73 0.40 0.53 

TS3 0.48 0.53 0.56 0.64 0.91 0.55 0.64 

TS4 0.46 0.49 0.53 0.66 0.91 0.55 0.66 

TS5 0.46 0.45 0.53 0.60 0.89 0.52 0.63 

TS6 0.46 0.52 0.62 0.64 0.91 0.53 0.63 

DD1 0.35 0.25 0.28 0.40 0.39 0.69 0.47 

DD2 0.48 0.45 0.37 0.52 0.45 0.84 0.42 

DD3 0.39 0.45 0.42 0.51 0.48 0.83 0.49 

DD4 0.52 0.45 0.44 0.69 0.55 0.84 0.56 

DD5 0.41 0.39 0.38 0.60 0.46 0.79 0.46 

OL1 0.48 0.43 0.42 0.52 0.61 0.50 0.86 

OL2 0.41 0.45 0.42 0.51 0.60 0.50 0.90 

OL3 0.45 0.49 0.43 0.55 0.61 0.52 0.90 

OL4 0.51 0.52 0.49 0.56 0.61 0.57 0.88 

OL5 0.45 0.58 0.56 0.54 0.64 0.52 0.81 
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Discussion 

This study identified various resources that build a big data capability. To do so, we 

relied on the resource-based view, past IT capabilities literature, and published work in big data. 

Following Grant (2010), this study further categorized these resources into tangible, human, and 

intangible resources. Specifically, (big) data and technology are suggested as the two necessary 

tangible resources, and managerial and technical big data-specific skills are identified as the 

important human skills. In addition to tangible and human resources, firms need to construct 

intangible resources such as data-driven culture and the intensity of organizational learning. This 

study then developed an instrument to evaluate a firm’s big data capability. Several tests were 

performed to assess the psychometric properties of the instrument. Given that the instrument 

consists of higher-order formative constructs, extra caution was taken in terms of model 

specification and model assessment. Consequently, we followed several guidelines available in 

the extant literature to avoid model misspecification and correctly assess the validity of the 

indicators and the constructs (e.g., Becker et al. 2012; Cenfetelli and Bassellier 2009; MacKenzie 

et al. 2011; Petter et al. 2007). For instance, we modelled higher-order constructs (i.e., tangible, 

human, intangible, and big data capability) using mode B “formative” method. We used the more 

restrictive VIF cutoff value of 3.3 to examine multicollinearity rather than cutoff values of 5 and 

10, which are also suggested in literature. For reflective constructs, in addition to Fornell and 

Larcker’s (1981) criteria and the examination of cross-loadings, we used the HTMT ratio to 

establish the discriminant validity of the first-order latent variables. In sum, the hierarchical 

model demonstrated good psychometric properties.  
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Implications 

The present study yields some interesting insights for practice. While the extant research 

yields some limited insights into the challenges pertaining to big data, most of this research 

remains fragmented. This study attempts to unify this stream of research by focusing on how 

firms can address these challenges by acquiring (or building) appropriate resources. While data, 

technology, and technical skills are some obvious resources that have garnered attention from 

organizations, this study suggests that managerial big data skills, data-driven culture, and the 

intensity of organizational learning are further needed if a firm desires to outdo its rivals. 

Further, this study presents an instrument to measure a big data capability, which can be 

employed by firms to assess their current and future big data capabilities. 

The findings of this study also provide valuable contributions to the growing body of 

research on big data. The majority of the extant literature on big data has been contributed by 

practitioners (or vendors), who are more interested in the properties (or dimensions) of big data 

and big data-related technology. Consequently, this stream of research lacks theoretical insights. 

This research, by utilizing RBV as a theoretical lens, identifies various resources that form a 

firm’s big data capability. This way, this research is an early attempt to examine the big data 

phenomenon using established management theories. Additionally, this study proposes and 

operationalizes the construct of big data capability, which can be further utilized by researchers 

interested in studying big data-specific topics in the future. This study also makes a significant 

contribution to an ongoing discussion on formative constructs (Aguirre-Urreta and Marakas 

2014; Rigdon et al. 2014). Furthermore, this study employs formative constructs at different 

levels (first-order, second-order, and third-order) and provides a step-by-step approach to avoid 

misspecification of formative constructs, a topic that has gained considerable attention recently 
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in the information systems field (Becker et al. 2012; Gudergan et al. 2008; Hair et al. 2011; 

Rigdon et al. 2014; Ringle et al. 2012).  

 

Limitations and future research 

Like any other study, this study is not without limitations. First, it is possible that this 

study might have missed some resources that may equally contribute to the development of a 

firm’s big data capability. Consequently, the research presented in this study can be further 

extended to include more big data-specific tangible, human, or intangible resources. Second, the 

instrument proposed in this study was validated using only one set of data that were collected 

from an online LinkedIn community. Further, the respondents in this study were employed at 

US-based organizations.  So, another avenue for future research is to further validate this 

instrument by collecting data from different (or non-LinkedIn) sources and respondents from 

different countries. This would further establish the reliability and validity of its measures. Third, 

this study utilizes partial least squares-structural equation modeling (PLS-SEM), which has 

attracted a lot of criticism from the proponents of covariance-based (CB) SEM. We suggest that 

future work in this area can further evaluate the hierarchical latent model presented in this study 

using CB-SEM. 
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CHAPTER 5. CONCLUSION 

 

Conclusions from the Three Studies 

The three studies in this dissertation were aimed at extending our understanding of 

culture in the information systems field. As discussed previously, there are several challenges 

pertaining to the definition and conceptualization of the notion of culture, however, despite these 

challenges, the concept of culture is termed critical to understand national, organizational, group, 

and individual-level behaviors. This dissertation consists of three studies (study 1, study 2, and 

study 3) where each study examined the impact of a different level of culture (e.g., national, 

organizational, and data-driven) in three different information systems-related research contexts. 

While study 1 focused on national culture and examined its role in computer-mediated deceptive 

communication, study 2 employed the competing values framework of organizational culture and 

examined how different forms of organizational culture (e.g., group, developmental, rational, and 

hierarchical) affect the implementation of agile practices in organizations. Study 3 looked at the 

data-driven decision making aspect of organizational culture, which along with other resources 

such as managerial and technical skills, and organizational learning, would create a big data 

capability. Specifically:   

Study 1 investigated the effects of four communication media and national culture on 

individuals ‘ability to detect deception. Drawing upon leakage theory and media synchronicity 

theory, this study hypothesized that deception detection rates would be highest for the judgments 

made from audiovisual media, followed by video only, audio only, and text only media. The 

results did not support this proposed ranking. Participants were better able to detect deception 

from audio only media (63.5%), followed by audiovisual (57.9%), text only (55.5%), and finally 
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video only media (53.5%). Further, only audio media was found statistically different from text 

and video only media. This study also hypothesized that individuals would be better able to 

detect deception in the outside culture than within their own culture. The results yielded support 

for this hypothesis. American participants detected deception more accurately from the stimulus 

sets featuring Indians than from the ones featuring Americans. Additionally, the deception 

detection rates were more accurate when Indian participants spoke in their second (English) 

language than when they spoke in their native (Hindi) language. This study also observed 

significant interaction effects between media and culture.  

This study has significant implications for practice and research. For practice, the 

findings suggest that, by examining irregularities in the speaking styles of non-native speakers, 

native speakers are capable of detecting deception in the outside culture. Further, contrary to a 

common assumption that links media capability to transmit more cues to higher deception 

detection rates, this study found that American judges made more accurate judgments from audio 

only media, compared to text and video only media. Too few cues in video only and text only 

media seem to impede judges’ ability to correctly identify deception. For research, by examining 

deception and its detection across different media, this study makes an important contribution to 

deception literature, which has primarily focused on real-time face-to-face conversations. 

Additionally, contrary to prior research that treats culture and language as two separate entities, 

this study considered culture and language tightly intertwined with each other, and examined 

their collective impact on deception detection. Furthermore, by examining the deception 

detection capabilities of American participants within their own culture and in the outside Indian 

culture, this study extends our understanding of deception and its detection across different 

cultures. 
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Study 2 examined the impact of four organizational cultural forms on two agile systems 

development practices, and how these practices influenced creativity, when applied to IT 

departments. While hierarchical culture negatively influenced both social and technical agile 

practices, developmental culture was found to have a positive impact on the two ASD practices.  

This study hypothesized that rational culture would likely have a negative influence on the use of 

social agile practices; however, this hypothesis was not supported. On the other hand, rational 

culture had a positive relationship with the use of technical agile practices. By comparison, while 

group culture was found to have a positive influence on social practices usage, the proposed 

negative relationship between group culture and technical agile practices was not supported. 

Further, as hypothesized, both technical and social agile practices increased organizational 

creativity, when applied to IT departments.  

This study yields some interesting insights for practice. Contrary to existing research, this 

study found that there is no ideal agile culture and, except for hierarchical culture, agile practices 

can be successfully followed in a range of organizational cultures. The only cultural form which 

IT managers interested in implementing agile methodologies should be wary of is hierarchical 

culture. Additionally, there was some support to suggest that cultural forms impact social and 

technical agile dimensions differently. While group, developmental, and rational forms of culture 

were found to encourage social agile practices, only developmental and rational culture had a 

significant positive relationship with technical agile practices. This suggests that IT managers of 

group culture-oriented organizations should invest more in social practices rather than in 

technical practices.  

Further, compared to prior research that has largely focused on case or ethnographic 

studies, this study adopted a survey method, thereby making the findings more generalizable 
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across organizations. The unit of the analysis in this study was the IT department instead of a 

team or a project. This study suggested that since organizations were more likely to introduce 

agile practices across their IT departments, it was reasonable to assess the impact of using these 

practices at the IT department-level. Additionally, while the importance of creativity in systems 

development is well-recognized in practice, the construct of creativity has received scant 

attention in the information systems development literature. By focusing on creativity as the 

outcome of using agile practices, this study extends our understanding of the scarcely studied 

concept of creativity in the management information systems literature. 

Study 3 suggested different resources that create a big data capability. Using the resource-

based view of the firm and prior work in IT resources/capabilities literature, this study proposed 

seven resources that in combination would generate a firm-level big data capability, which in 

turn might lead to superior firm performance. These seven big data-specific resources are data, 

technology, basic resources (e.g., adequate investments, sufficient staff, and time), managerial 

“big data” skills, technical “big data” skills, data-driven culture, and intensity of organizational 

learning. While data, technology, and basic resources were termed as tangible resources, 

managerial and technical skills were considered human resources. Data-driven culture and 

intensity of organizational learning were proposed as the two intangible resources. This study 

argued that only the firms that have the ability to develop a unique combination of these seven 

resources would likely harness the true potential of their big data. Consistent with recent work in 

big data, this study suggests that organizations that primarily rely on the past experience and 

intuition of their top-executives to make important decisions are less likely to benefit from their 

big data investments. Besides investments, big data-specific human skills, and the intensity of 

organizational learning firms must develop and promote a data-driven decision making culture 
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where employees at all levels, irrespective of their job titles, are capable of making good 

decisions. 

Based on survey data collected from 232 experienced big data, this study developed the 

big data capability instrument. The instrument demonstrated good psychometric properties 

thereby providing support for the importance of seven resources suggested in this study in 

creating a firm-specific big data capability. This study also has implications for practice and 

research. Practitioners can employ the big data capability instrument to evaluate current and 

future big data capabilities of their organizations. Additionally, this study proposes and 

operationalizes the construct of big data capability, which can be further utilized by scholars to 

further the research on big data in the future. Furthermore, the existing literature on big data has 

primarily been contributed by practitioners. Consequently, this stream of research lacks 

theoretical insights. By using the resource-based perspective of the firm, this study attempted to 

understand the big data phenomenon through a theoretical lens of established management 

theories. 
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